• Title/Summary/Keyword: strains inoculation

Search Result 331, Processing Time 0.037 seconds

Studies on Development of Antagonistic Microorganism by Cell Fusion - Biological control of disease - ) (세포융합에 의한 신 길항미생물 육종에 관한 연구 - 목초 병해의 생물학적 방제 -)

  • 최기춘;이영환;전우복
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • This study was to investigate an effective biological control of forage diseases and provide a basic data and a model in improving variety of antagonistic bacteria, with growth promoting effect on forage, through cell fusion. The results obtained were summarized as follows; 1. The antagonistic himbacterium against soil-borne phathogenic fungi Fusarium oxysporum and Rhizoctonia solani was isolated from continuous cropping himsphere soil of forage, and its biological and physiological characteristics were investigated. This bacterium was identified as Bacillus subrilis and named BS 101. Another strain for cell fusion was Bacillus thur ingiensis ssp. kurstaki HD-I(BT 37669) with insecticidal crystal. 2. The auxotropic mutants of BS 101 and BT 37669 were derived after mutagenesis using N-methyl-N'nitro- Nitrosoguanidine(NTG) to give amino acid requirement marker. n e s e auxotropic mutants of BS 101 and BT 37669 were named BS 1013(his-) and BT 69(asp-), respectively. 3. The best protoplast requirement was obtained using DM 3 medium, containing 5% casamino acid, 1 M $MgCI_2$ and 2% bovine semm albumin, to give Fusant 3, 7 and 8. BT toxin gene was not identified with fusants by Southern blotting. However, SDS-PAGE analysis of strains showed various protein patterns among fusants. 4. From the dark culture experiment, growth of forage in inoculated soil with antagonistic bacteria was delayed than that of non-inoculated soil with antagonistic bacteria in each continuous cropping soil and in each sterilized soil. On the other hand, growth duration of forage was different between continuous cropping soil and sterilized soil. 5. Seed germination of Alfalfa, Italian ryegrass and Orchardgrass were significantly improved by inoculation of antagonistic bacteria(p< 0.05).

  • PDF

Genetic and biological characteristics of recent Korean isolates of avian influenza virus subtype H9N2

  • Acharya, Madhav Prasad;Kwon, Hyuk-Joon;Kim, Il-Hwan;Lee, Youn-Jeong;Kim, Jae-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.223-230
    • /
    • 2012
  • The worldwide distribution and continuing genetic mutation of avian influenza virus (AIV) has been posed a great threat to human and animal health. A comparison of 3 isolates of AIV H9N2, A/chicken/Korea/KBNP-0028/00 (H9N2) (KBNP-0028), A/chicken/Korea/SNU8011/08 (H9N2) (SNU 8011) and an inactivated oil vaccine strain A/chicken/Korea/01310/01 (H9N2) (01310), was performed. The former 2 AIVs were isolated from field cases before and after the application of an inactivated H9N2 vaccine in 2007, respectively. The antigenic relationship, viral shedding, tissue tropism and genetic analysis were examined. The comparison of virus shedding from the cloaca and the oropharynx revealed that both isolates were more frequently isolated from the upper respiratory tract (90~100%) 1 day post inoculation (DPI) compared with isolation 5 DPI from gastrointestinal tracts (10~60%). Moreover, the isolate KBNP-0028 were recovered from all organs including bone marrow, brain and kidneys, indicating higher ability for broad tissue dissemination than that of SNU 8011. KBNP-0028 replicated earlier than other strains and with a higher titer than SNU 8011. In full-length nucleotide sequences of the NA gene and a partial sequence of the HA gene of SNU 8011, we found that there might be significant changes in tissue tropism, virus replication and genetic mutation in AIV H9N2 isolates.

First Description of Crown Gall Disease on Ginseng

  • Jeon, Yong-Ho;Park, Hoon;Lee, Byeong-Dae;Yu, Yun-Hyun;Chang, Sung-Pae;Kim, Sang-Gyu;Hwang, In-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.207-210
    • /
    • 2008
  • In March of 2003, tumors (galls) were observed on ginseng seedling roots in ginseng seedbeds at Yeoju, Gyeonggi province, Korea. Symptoms were spherical or galls with about 0.5-1.0cm in diameter formed on the upper through middle parts of the primary roots. Bacterial isolates obtained from the root galls were Gram-negative, rod-shaped with peritrichous flagella, aerobic, not forming yellow or orange colonies on nutrient glucose agar, yeast extract-dextrose $CaCO_3$ agar and nutrient-broth yeast extract agar, non-fluorescent on King's B agar, and non-spore forming, which were identical to characteristics of the genus Agrobacterium. They were identified as Agrobacterium tumefaciens with 0.732-0.993 similarities in 100% probability by the Biolog analyses. The 16S rRNA gene partial sequences of the six isolates tested (Genbank Accession EF486308-EF486313) were 100% homologous to those of other A. tumefaciens strains (GenBank accession AF501343, AY701900, AY701898, AY701899). The above results confirmed that this bacterium is A. tumefaciens. Pathogenicity of the bacteria was proved by the inoculation test on carrot root discs and tomato seedlings. This is the first description of A. tumefaciens causing root gall in ginseng seedling. The disease occurred locally and sparsely, but considering its appearances in seedbeds suggests that the ginseng root gall may become a threat to ginseng in Korea.

Microcosm Study for Revegetation of Barren Land with Wild Plants by Some Plant Growth-Promoting Rhizobacteria

  • Ahn, Tae-Seok;Ka, Jong-Ok;Lee, Geon-Hyoung;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • Growth promotion of wild plants by some plant growth-promoting rhizobacteria (PGPR) was examined in the microcosms composed of soils collected separately from a grass-covered site and a nongrass-covered site in a lakeside barren area at Lake Paro, Korea. After sowing the seeds of eight kinds of wild plants and inoculation of several strains of PGPR, the total bacterial number and microbial activity were measured during 5 months of study period, and the plant biomasses grown were compared at the end of the study. Acridine orange direct counts in the inoculated microcosms, $1.3-9.8{\times}10^9\;cells{\cdot}g\;soil^{-1}$ in the soil from the grass-covered area and $0.9-7.2{\times}10^9\;cells{\cdot}g\;soil^{-1}$ in the soil from the nongrass-covered site, were almost twice higher than those in the uninoculated microcosms. The number of Pseudomonas sp., well-known bacteria as PGPR, and the soil dehydrogenase activity were also higher in the inoculated soils than the uninoculated soils. The first germination of sowed seeds in the inoculated microcosm was 5 days earlier than the uninoculated microcosm. Average lengths of all plants grown during the study period were 26% and 29% longer in the inoculated microcosms starting with the grass-covered soil and the nongrass-covered soil, respectively, compared with those in the uninoculated microcosms. Dry weights of whole plants grown were 67-82% higher in the inoculated microcosms than the uninoculated microcosms. Microbial population and activity and growth promoting effect by PGPR were all higher in the soils collected from the grass-covered area than in the nongrass-covered area. The growth enhancement of wild plants seemed to occur by the activities of inoculated microorganisms, and this capability of PGPR may be utilized for rapid revegetation of some barren lands.

An Alternative Approach to the Traditional Mixotrophic Cultures of Haematococcus pluvialis Flotow (Chlorophyceae)

  • Goksan, Tolga;Ak, lknur;Gokpinar, Sevket
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1276-1282
    • /
    • 2010
  • In traditional mixotrophic cultures of microalgae, all the inorganic nutrients and organic carbon sources are supplied in the medium before inoculation. In this study, however, an alternative approach was adopted in Haematococcus pluvialis Flotow, a microalga capable of growing mixotrophically on sodium acetate (Na-Ac). First, the cells were grown under 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ phototrophically without Na-Ac until the stationary phase and then exposed to five different light regimes by the addition of Na-Ac (e.g., dark, 20, 40, 75, and 150 ${\mu}Mol$ photons $m^{-2}s^{-1}$). Dry weight (DW), pigments, and especially cell number in alternative mixotrophy (AM) were higher than traditional mixotrophy (TM). Cell number in AM almost doubled up from 21.7 to $42.9{\times}10^4$ cells/ml during 5-day exposure to Na-Ac, whereas the increase was only 1.2-fold in TM. Maximum cell density was reached in 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ among the light intensities tested. We propose that Na-Ac in TM of H. pluvialis can not be utilized as efficiently as in AM. With this respect, AM has several advantages against TM such as a much higher cell density in a batch culture period and minimized risk of contamination owing to the shorter exposure of cells to organic carbon sources. In consequence, this method may be used for other strains of the species, and even for the other microalgal species able to grow mixotrophically.

UmTco1, a Hybrid Histidine Kinase Gene, Is Essential for the Sexual Development and Virulence of Ustilago maydis

  • Yun, Yeo Hong;Oh, Man Hwan;Kim, Jun Young;Kim, Seong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.1010-1022
    • /
    • 2017
  • Hybrid histidine kinase is part of a two-component system that is required for various stress responses and pathogenesis of pathogenic fungi. The Tco1 gene in human pathogen Cryptococcus neoformans encodes a hybrid histidine kinase and is important for pathogenesis. In this study, we identified a Tco1 homolog, UmTco1, in the maize pathogen Ustilago maydis by bioinformatics analysis. To explore the role of UmTco1 in the survival of U. maydis under environmental stresses and its pathogenesis, ${\Delta}umtco1$ mutants were constructed by allelic exchange. The growth of ${\Delta}umtco1$ mutants was significantly impaired when they were cultured under hyperosmotic stress. The ${\Delta}umtco1$ mutants exhibited increased resistance to antifungal agent fludioxonil. In particular, the ${\Delta}umtco1$ mutants were unable to produce cytokinesis or conjugation tubes, and to develop fuzzy filaments, resulting in impaired mating between compatible strains. The expression levels of Prf1, Pra1, and Mfa1, which are involved in the pheromone pathway, were significantly decreased in the ${\Delta}umtco1$ mutants. In inoculation tests to the host plant, the ${\Delta}umtco1$ mutants showed significantly reduced ability in the production of anthocyanin pigments and tumor development on maize leaves. Overall, the combined results indicated that UmTco1 plays important roles in the survival under hyperosmotic stress, and contributes to cytokinesis, sexual development, and virulence of U. maydis by regulating the expression of the genes involved in the pheromone pathway.

Endophytic Bacteria Improve Root Traits, Biomass and Yield of Helianthus tuberosus L. under Normal and Deficit Water Conditions

  • Namwongsa, Junthima;Jogloy, Sanun;Vorasoot, Nimitr;Boonlue, Sophon;Riddech, Nuntavan;Mongkolthanaruk, Wiyada
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1777-1789
    • /
    • 2019
  • Drought is more concerned to be a huge problem for agriculture as it affects plant growth and yield. Endophytic bacteria act as plant growth promoting bacteria that have roles for improving plant growth under stress conditions. The properties of four strains of endophytic bacteria were determined under water deficit medium with 20% polyethylene glycol. Bacillus aquimaris strain 3.13 showed high 1-aminocyclopropane-1-carboxylate (ACC) deaminase production; Micrococcus luteus strain 4.43 produced indole acetic acid (IAA). Exopolysaccharide production was high in Bacillus methylotrophicus strain 5.18 while Bacillus sp. strain 5.2 did not show major properties for drought response. Inoculation of endophytic bacteria into plants, strain 3.13 and 4.43 increased height, shoot and root weight, root length, root diameter, root volume, root area and root surface of Jerusalem artichoke grown under water limitation, clearly shown in water supply at 1/3 of available water. These increases were caused by bacteria ACC deaminase and IAA production; moreover, strain 4.43 boosted leaf area and chlorophyll levels, leading to increased photosynthesis under drought at 60 days of planting. The harvest index was high in the treatment with strain 4.43 and 3.13 under 1/3 of available water, promoting tuber numbers and tuber weight. Inulin content was unchanged in the control between well-watered and drought conditions. In comparison, inulin levels were higher in the endophytic bacteria treatment under both conditions, although yields dipped under drought. Thus, the endophytic bacteria promoted in plant growth and yield under drought; they had outstanding function in the enhancement of inulin content under well-watered condition.

Isolation and Identification of Plant-Growth-Promoting Bacteria and Their Effect on Growth of Red Pepper(Capsicum annuum L.) (식물생육촉진(植物生育促進) 세균(細菌) 분리(分離), 동정(同定)과 고추에 대한 처리효과(處理效果))

  • Lee, Young-Han;Yun, Han-Dae;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth of red pepper(Capsicum annuum L.).The eight plant-growth-promoting bacteria were isolated from the humic soil in the forest region. The isolated bacteria(IB) was identified by the method of the biochemical test(API kit) and the composition of the fatty acid(MIDI system).The IBs were inoculated by spray of 17ml at 72 cell tray filled with peatmoss every week. respectively, with mixed liquid eulture of eight strains. The IBs were identified as Micrococcus sp.. Bacillus subtilis. Enterobacter agglomerans, Bacillus megaterium, Pseudomonas putida. Pseudomonas fluorescens, Xanthomonas maltophilia and Staphylococcus xylosus by API kit and MIDI system. The plant height number of leaves and leaf length of red pepper grown on peatmoss treated with the IB were better than those of nontreatment at the 10th day after inoculation.

  • PDF

Occurrence of Brown Blight of Tea Plant Caused by Pseudomonas syringae pv. theae in Korea (Pseudomonas syringae pv. theae에 의한 차나무 갈색마름병 발생)

  • Choi, Jae-Eul;Cha, Sun-Kyung;Ryuk, Jin-Ah;Choi, Chun-Hwan;Nou, Ill-Sup
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.213-216
    • /
    • 2003
  • A bacterial disease of tea plants(Camellia sinensis L.) was found in the graftage nursery grown under vinyl house conditions in Suncheon city, Korea, in spring of 2002. The primary symptoms of the disease include small, water-soaked and dark brown spot development on the young leaves. This spot gradually increases in size, especially taking on elongate shape along the midrib or vein of the leaf, and then turns black. The diseased leaves were defoliated easily. Ten strains were isolated from the infected leaf. Inoculation on tea leaf with these isolates produced the same symptoms of naturally infected plants. On the basis of stain reactions, morphological characterization, colony pattern, physiological and biochemical reactions, the bacterium was identified as Pseudomonas syringae pv. theae. This is the first report of brown blight of tea plant in Korea.

A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus

  • Kim, Taehyun;Lee, Song Hee;Oh, Young Taek;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.314-322
    • /
    • 2020
  • Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of MoHDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Wound-inoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.