Browse > Article
http://dx.doi.org/10.4014/jmb.0909.09005

An Alternative Approach to the Traditional Mixotrophic Cultures of Haematococcus pluvialis Flotow (Chlorophyceae)  

Goksan, Tolga (Department of Aquaculture, Faculty of Fisheries, Canakkale Onsekiz Mart University)
Ak, lknur (Department of Aquaculture, Faculty of Fisheries, Canakkale Onsekiz Mart University)
Gokpinar, Sevket (Department of Aquaculture, Faculty of Fisheries, Ege University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.9, 2010 , pp. 1276-1282 More about this Journal
Abstract
In traditional mixotrophic cultures of microalgae, all the inorganic nutrients and organic carbon sources are supplied in the medium before inoculation. In this study, however, an alternative approach was adopted in Haematococcus pluvialis Flotow, a microalga capable of growing mixotrophically on sodium acetate (Na-Ac). First, the cells were grown under 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ phototrophically without Na-Ac until the stationary phase and then exposed to five different light regimes by the addition of Na-Ac (e.g., dark, 20, 40, 75, and 150 ${\mu}Mol$ photons $m^{-2}s^{-1}$). Dry weight (DW), pigments, and especially cell number in alternative mixotrophy (AM) were higher than traditional mixotrophy (TM). Cell number in AM almost doubled up from 21.7 to $42.9{\times}10^4$ cells/ml during 5-day exposure to Na-Ac, whereas the increase was only 1.2-fold in TM. Maximum cell density was reached in 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ among the light intensities tested. We propose that Na-Ac in TM of H. pluvialis can not be utilized as efficiently as in AM. With this respect, AM has several advantages against TM such as a much higher cell density in a batch culture period and minimized risk of contamination owing to the shorter exposure of cells to organic carbon sources. In consequence, this method may be used for other strains of the species, and even for the other microalgal species able to grow mixotrophically.
Keywords
Haematococcus pluvialis; vegetative growth; mixotrophic culture; acetate; pigments;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Jin, E., C.-G. Lee, and J. E. W. Polle. 2006. Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): Biosynthesis, regulation, and biotechnology. J. Microbiol. Biotechnol. 16: 821-831.   과학기술학회마을
2 Orosa, M., D. Franqueira, A. Cid, and J. Abalde. 2005. Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour. Technol. 96: 373-378.   DOI   ScienceOn
3 Wang, S. B., F. Chen, M. Sommerfeld, and Q. Hu. 2005. Isolation and proteomic analysis of cell wall-deficient Haematococcus pluvialis mutants. Proteomics 5: 4839-4851.   DOI   ScienceOn
4 Falkowski, P. G. 1980. Light-shade adaptation and vertical mixing of marine phytoplankton, pp. 99-117. In P. G. Falkowski (ed.). Primary Productivity in the Sea. Plenum, New York.
5 Boussiba, S. and A. Vonshak. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32: 1077-1082.   DOI
6 Chen, F., H. Chen, and X. Gong. 1997. Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour. Technol. 62: 19-24.   DOI   ScienceOn
7 Aflalo, C., Y. Meshulam, A. Zarka, and S. Boussiba. 2007. On the relative efficiency of two vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98: 300-305.   DOI   ScienceOn
8 Christiansen, R., O. Lie, and O. J. Torrissen. 1995. Growth and survival of Atlantic salmon, Salmo salar L., fed different dietary levels of astaxanthin. First-feeding fry. Aquac. Nutr. 1: 189-198.   DOI
9 Cifuentes, A. S., M. A. Gonzalez, S. Vargas, M. Hoeneisen, and N. Gonzalez. 2003. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, U.S.A.) under laboratory conditions. Biol. Res. 36: 343-357.
10 Fabregas, J., A. Otero, A. Maseda, and A. Dominguez. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89: 65-71.   DOI   ScienceOn
11 Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods Enzymol. 148: 349-382.
12 Torzillo, G., T. Goksan, O. Isik, and S. Gokpinar. 2005. Photon irradiance required to support optimal growth and interrelations between irradiance and pigment composition in the green alga Haematococcus pluvialis. Eur. J. Phycol. 40: 233-240.   DOI   ScienceOn
13 Yamada, S., Y. Tanaka, M. Sameshima, and Y. Ito. 1990. Pigmentation of prawn (Penaeus japonicus) with carotenoids. I. Effect of dietary astaxanthin, beta-carotene and canthaxanthin on pigmentation. Aquaculture 87: 323-330.   DOI   ScienceOn
14 Rocha, J. M. S., J. E. C. Garcia, and M. H. F. Henriques. 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol. Eng. 20: 237-242.   DOI   ScienceOn
15 Sandnes, J. M., T. Ringstad, D. Wenner, P. H. Heyerdahl, T. Kallqvist, and H. R. Gislerod. 2006. Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors. J. Biotechnol. 122: 209-215.   DOI   ScienceOn
16 Torzillo, G., T. Goksan, C. Faraloni, J. Kopecky, and J. Masojidek. 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J. Appl. Phycol. 15: 127-136.   DOI
17 Prezelin, B. B. and H. A. Matlick. 1980. Time course of photoadaptation in the photosynthesis irradiance relationship of a dinoflagellate exhibiting photosynthetic periodicity. Mar. Biol. 58: 85-96.   DOI
18 Rippka, R., J. B. Deruelles, M. Herdman, B. Waterbury, and R. Y. Stanier. 1979. Generic assignments, strain history and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111: 1-61.   DOI
19 Lee, Y.-K. and D.-H. Zhang. 1999. Production of astaxanthin by Haematococcus, pp. 173-190. In Z. Cohen (ed.). Chemicals from Microalgae. Taylor and Francis, London.
20 Lee, H.-S., Z.-H. Kim, S.-E. Jung, J.-D. Kim, and C.-G. Lee. 2006. Specific light uptake rate can be served as a scale-up parameter in photobioreactor operations. J. Microbiol. Biotechnol. 16: 1890-1896.   과학기술학회마을
21 Hagen, C., S. Siegmund, and W. Braune. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37: 217-226.   DOI   ScienceOn
22 Meireles, L. A., J. L. Azevedo, J. P. Cunha, and F. Xavier Malcata. 2002. On-line determination of biomass in a microalgal bioreactor using a novel computerized flow injection analysis system. Biotechnol. Prog. 18: 1387-1391.   DOI   ScienceOn
23 Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873.
24 Lee, Y.-K. and C. W. Soh. 1991. Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J. Phycol. 27: 575-577.   DOI
25 Kaewpintong, K., A. Shotipruk, S. Powtongsook, and P. Pavasant. 2007. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour. Technol. 98: 288-295.   DOI   ScienceOn
26 Hata, N., J. C. Ogbonna, Y. Hasegawa, H. Taroda, and H. Tanaka. 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J. Appl. Phycol. 13: 395-402.   DOI   ScienceOn
27 Inborr, J. 1998. Haematococcus, the poultry pigmentor. Feed Mix 6: 31-34.
28 Jeon, Y.-C., C.-W. Cho, and Y.-S. Yun. 2006. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb. Tech. 39: 490-495.   DOI   ScienceOn
29 Gong, X. and F. Chen. 1997. Optimization of culture medium for Haematococcus pluvialis. J. Appl. Phycol. 9: 437-444.   DOI   ScienceOn
30 Guerin, M., M. E. Huntley, and M. Olaizola. 2003. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21: 210-216.   DOI   ScienceOn
31 Fabregas, J., A. Dominguez, M. Regueiro, A. Maseda, and A. Otero. 2001. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 53: 530-535.