• Title/Summary/Keyword: strain-mode-shapes

Search Result 89, Processing Time 0.024 seconds

Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads (면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석)

  • Han, Sung-Cheon;Choi, Samuel
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.191-203
    • /
    • 2006
  • The vibration characteristics of composite stiffened laminated plates with stiffener is presented using the assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for the stiffener made of composite material is compared with that of the beam model. In the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and unstiffened composite plates when subjected to the in-plane compression and shear loads. The in-plane compression affect the natural frequencies and mode shapes of the stiffened laminated composite plates and the increase in magnitude of the in-plane compressive load reduces the natural frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The natural frequencies of composite stiffened plates with shear loads exhibit the higher values than the case of without shear loads. Also, the intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of the mode shapes as a result of the increase in the inplane compressive load. The results are compared with those available in the literature and this result shows that the present shell model for the stiffened plate gives more accurate results. Therefore, the magnitude, direction type of the in-plane shear and compressive loads in laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. The Lanczos method is employed to solve the eigenvalue problems.

Full Scale Measurement Data Analysis of Large Container Carrier with Hydroelastic Response, Part I - Identification of Modal Parameters (대형 컨테이너 선박의 유탄성 실선 계측 데이터 분석 Part I - 모달 파라미터 추정)

  • Kim, Byounghoon;Choi, Byungki;Park, Junseok;Park, Sunggun;Ki, Hyeokgeun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • To understand the dynamic characteristics of the vessel with hydroelastic response, it is very important to estimate the dynamic modal parameters such as mode shapes, natural frequency, and damping ratio. These dynamic modal parameters of full scale ship are a priori unknowns, hence to be estimated directly based upon the full scale measurement data. In this paper, dynamic modal parameters were extracted by signal processing of acceleration and strain data measured from a large container ship whose loading capacity is 9400TEU. The mode shapes of the vibrating hull were identified using the proper orthogonal decomposition and the vibration response of hull was decomposed into its modal magnitudes. Natural frequencies of specific modes were derived via Fourier transform of these modal magnitude. Also, the free decay signal of the vibrating hull was obtained through the random decrement technique and the damping ratio was estimated with accuracy.

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

Utilizing virtual vibration tests to optimize physical endurance tests

  • Kihm, Frederic
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.239-249
    • /
    • 2018
  • Physical tests are performed at various stages of the development cycle of a product, from prototype validation to product qualification. Although costly, there are growing demands for qualification tests like endurance vibration testing to be more representative of the real world. At the same time there are growing demands to assess the durability of these items based on FEA simulation. In this paper, we will explain how to set up a CAE-based test and how to correlate the results with some physical measurements. Specific assumptions will be explained and some advantages of using virtual tests will be highlighted such as the reduction of the number of prototypes needed, investigations on failures, evaluation of the level of reliability via sensitivity analysis, evaluation of the margins are at the end of a successful test. This presentation will therefore focus on explaining and showing how virtual tests can enrich the exploitation of physical tests.

Stability Analysis of Stiffened Thin Plates Using Energy Method (에너지법을 이용한 보강된 박판의 안정성해석)

  • KIM, Moon Young;MIN, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.55-65
    • /
    • 1996
  • For stability analysis of stifened rectangular thin plates with various boundary conditions, Ritz method is presented. An energy method is especially useful in those cases where a rigorous solution of the diferential eqution is unknown or where we have a plate reinforced by stiffeners and it is required to find only an approximate value of the critical load. The strain energy due to the plate bending and the work done by the in-plane forces are taken into account in order to apply the principle of the minimum potential energy. The buckling mode shapes of flexural beams with various boundary conditions are derived, and shape functions consistent with the given boundary conditions in the two orthogonal directions are chosen from those displacement functions of beams. The matrix equations for stability of stiffened rectangular thin plates are determined from the stationary condition of the total potential energy. Numerical example for stability behaviors of horizontally and vertically stiffened plates subjected to uniform compression, bending and shear loadings are presented and the obtained results are compared with other researchers' results.

  • PDF

Flexural Vibration Analysis of a Sandwich Beam Specimen with a Partially Inserted Viscoelastic Layer

  • Park, Jin-Tack;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.347-356
    • /
    • 2004
  • The flexural vibration characteristics of a sandwich beam system with a partially inserted viscoelastic layer were quantitatively studied using the finite element analysis in combination with the sine-sweep experiment. Asymmetric mode shapes of the flexural vibration were visualized by holographic interferometry, which agreed with those obtained by the finite element simulation. Effects of the length and the thickness of the partial viscoelastic layer on the system loss factor (η$\_$s/) and resonant frequency (f$\_$r/) were significantly large for both the symmetric and asymmetric modes of the beam system.

Numerical Experiment for a Strain Energy Equivalence Principle (SEEP)-based Continuum Damage Model (탄성변형에너지 등가원리 기반 연속체 손상모델에 대한 수치실험)

  • Youn, Deok-Ki;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.31-34
    • /
    • 2006
  • A new continuum damage theory (CDT) has been proposed by Lee et al. (1996) based on the SEEP. The CDT has the apparent advantage over the other related theories because the complete constitutive law can be readily derived by simply replacing the virgin elastic stiffness with the effective orthotropic elastic stiffness obtained by using the proposed continuum damage theory. In this paper, the CDT is evaluated by the numerical experiment comparing the mode shapes and natural frequencies of a square plate containing a small line-through crack with those of the same plate with a damaged site replaced with the effective orthotropic elastic stiffness computed by using the CDT.

  • PDF

Topology Optimization of Plane Structures under Free Vibration with Isogeometric Analysis (등기하해석법을 이용한 자유진동 평면구조물의 위상최적화)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2018
  • Isogeometric concept is introduced to find out the optimum layout of plane structure under free vibration. Eigenvalue problem is formulated and numerically solved in order to obtain natural frequencies and mode shapes of plane structures. For the exact geometric expression of the structure, the Non-Uniform Rational B-spline Surface (NURBS) basis functions is employed and it is also used to define the material density functions. A node-wise design variables is adopted to deal with the updating of material density in topology optimization (TO). The definition of modal strain energy is employed to achieve the maximization of fundamental frequency through its minimization. The verification of the proposed TO technique is performed by a series of benchmark test for plane structures.