• 제목/요약/키워드: strain-mode-shapes

검색결과 87건 처리시간 0.021초

폴리머 콘크리트 샌드위치 구조재의 휨특성 (Flexural Cnaracteristics of Polymer Concrete Sandwich Constructions)

  • 연규석
    • 한국농공학회지
    • /
    • 제31권2호
    • /
    • pp.125-134
    • /
    • 1989
  • This study was conducted to investigate the flexural behaviour of sandwich constructions with cement concrete core and polymer concrete facings. Six different cross-sectional shapes using epoxy based polymer concrete facings were investigated. Some of the results from the static tests are given including the load-deflection responses, load-strain relationships, ultimate moment, and mode of failure. From the. results the following conclusions can be made. 1. The various strengths of polymer concrete were very high compared to the strengths for portland cement concrete, while modulus of elasticity assumed an aspect of contrast. 2. The thickness of core and facing exerted a great influence on the deflection and ultimate strenght of polymer concrete sandwich constructions. 3. The variation shape of deflection and strain depend on loading were a very close approximation to the straight line. The ultimate strain of polymer concrete at the end of tensile side were ranged from 625x10-6 to 766x10-6 and these values increased in proportion to the decrease of thickness of core and facings. 4. The ultimate moments of polymer sandwich constructions were 3 to 4 times that of cement concrete constructions which was transformed same section. It should he noted that polymer concrete have an effect on the reinforcement of weak constructions. 5. Further tests are neede to investigate the shear strain of constructions, and thermal expansion, shrinkage and creep of cement and polymer concrete which were composite materials of sandwich constructions.

  • PDF

Investigation of the effect of shell plan-form dimensions on mode-shapes of the laminated composite cylindrical shallow shells using SDSST and FEM

  • Dogan, Ali;Arslan, H. Murat
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.303-324
    • /
    • 2012
  • This paper presents the mode-shape analysis of the cross-ply laminated composite cylindrical shallow shells. First, the kinematic relations of strains and deformation are given. Then, using Hamilton's principle, governing differential equations are developed for a general curved shell. Finally, the stress-strain relation for the laminated, cross-ply composite shells are obtained. By using some simplifications and assuming Fourier series as a displacement field, the governed differential equations are solved by the matrix algebra for shallow shells. Employing the computer algebra system called MATHEMATICA; a computer program has been prepared for the solution. The results obtained by this solution are compared with the results obtained by (ANSYS and SAP2000) programs, in order to verify the accuracy and reliability of the solution presented.

Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions

  • Jandaghian, Ali Akbar;Rahmani, Omid
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.67-78
    • /
    • 2017
  • In this study, free vibration of functionally graded (FG) micro/nanobeams based on nonlocal third-order shear deformation theory and under different boundary conditions is investigated by applying the differential quadrature method. Third-order shear deformation theory can consider the both small-scale effects and quadratic variation of shear strain and hence shear stress along the FG nanobeam thickness. The governing equations are obtained by using the Hamilton's principle, based on third-order shear deformation beam theory. The differential quadrature (DQ) method is used to discretize the model and attain the natural frequencies and mode shapes. The properties of FG micro/nanobeam are assumed to be chanfged along the thickness direction based on the simple power law distribution. The effects of various parameters such as the nonlocal parameter, gradient index, boundary conditions and mode number on the vibration characteristics of FG micro/nanobeams are discussed in detail.

Experimental investigations on seismic response of riser in touchdown zone

  • Dai, Yunyun;Zhou, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.348-359
    • /
    • 2018
  • A series of indoor simulation tests on a large-sized shaking table was performed, which was used to simulate the earthquake ground motion for the pipe-soil interaction system to be tested. The purpose of this study is to examine the dynamic characteristic and seismic response of a length of PVC pipeline lay on a clay seabed under seismic load. The pipeline was fully instrumented to provide strain and acceleration responses in both transverse and in-line. Dynamical modal tests show that corresponding mode shapes vertically and horizontally are basically the same. But the absolute values of the natural frequencies vertically are all higher than those corresponding values in transverse. It turned out that the geometry configuration of riser affects its stiffness. Seismic response of pipeline depends significantly on the waveform, and Peak Ground Acceleration (PGA). As the seismic loading progressed, the strain response was severe around both TDZ and catenary zone. Additionally, strain responses in top and bottom positions were more severe than the result in left or right side of the pipeline in the same section.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

빔 구조물의 모달 변형에너지를 이용한 손상탐지 (Damage Detection in a Beam Structure Using Modal Strain Energy)

  • 박수용;최상현
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.333-342
    • /
    • 2003
  • 본 논문의 목적은 빔 구조물에서 발생할 수 있는 손상의 위치를 탐색하고, 그 손상의 정도를 추정할 수 있는 알고리즘을 제안하는 것이다. 제안된 방법은 구조물의 모달 변형에너지의 차이를 이용한다. 구조물 내 발생한 국부적인 손상의 위치를 파악하고 그에 상응하는 손상도를 추정할 수 있는 손상지수를 손상 전과 손상 후 구조물의 모드형상에서 얻을 수 있는 모달 변위로 표현하였고 그 관계식을 정립하였다. 구조물 내 손상의 위치를 결정하는 방법은 기 개발된 손상 지표를 적용하였다. 제안된 방법의 우수성과 효용성은 수치적으로 손상을 모사한 빔 구조물을 이용하여 입증하였다.

Estimation of semi-rigid joints by cross modal strain energy method

  • Wang, Shuqing;Zhang, Min;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.757-771
    • /
    • 2013
  • We present a semi-rigid connection estimation method by using cross modal strain energy method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable connections to be modeled as partially restrained, which improves the quality of the model. To identify the connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the correction coefficients for the CMSE method are derived, which enables less modal information to be used in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid joint(s) on single connection and on multi-connections, without and with measurement noise, are investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness can be estimated by CMSE method.

Performance assessment of bridges using short-period structural health monitoring system: Sungsu bridge case study

  • Kaloop, Mosbeh R.;Elsharawy, Mohamed;Abdelwahed, Basem;Hu, Jong Wan;Kim, Dongwook
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.667-680
    • /
    • 2020
  • This study aims at reporting a systematic procedure for evaluating the static and dynamic structural performance of steel bridges based on a short-period structural health monitoring measurement. Sungsu bridge located in Korea is considered as a case study presenting the most recent tests carried out to examine the bridge condition. Short-period measurements of Structural Health Monitoring (SHM) system were used during the bridge testing phase. A novel symmetry index is introduced using statistical analyses of deflection and strain measurements. Frequency Domain Decomposition (FDD) is implemented to the strain measurements to estimate the bridge mode shapes and damping ratios. Furthermore, Markov Chain Monte Carlo (MCMC) is also implemented to examine the reliability of bridge performance while ambient design trucks are in static or moving at different speeds. Strain, displacement and acceleration were measured at selected locations on the bridge. The results show that the symmetry index can be an efficient and useful measure in assessing the steel bridge performance. The results from the used method reveal that the performance of the Sungsu bridge is safe under operational conditions.

선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度) (On the Effective Shear Rigidity in Ship Vibration Analysis)

  • 김극천;최수현
    • 대한조선학회지
    • /
    • 제22권1호
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF

면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석 (Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads)

  • 한성천;최삼열
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.191-203
    • /
    • 2006
  • 가정 변형률 9절점 쉘 요소를 이용하여 스티프너로 보강된 적층 복합 보강판의 진동 특성을 연구하였다. 기존의 연구결과들과 비교하기 위하여 대칭으로 적층된 carbon-epoxy 복합재료 적층 판을 사용하였다. 또한 본 연구에서 스티프너를 쉘로 모델링 한 결과들은 보 요소로 모델링 된 결과들과 비교하였다. 비틀림에 약한 스티프너의 경우에 국부 좌굴이 스티프너에서 발생할 수 있다. 이 경우에 스티프너는 쉘로 모델링 하여야 한다. 본 연구는 면내 압축 및 전단하중을 받는 적층 복합 보강 판과 보강되지 않은 적층 복합 판의 연구에 집중되어 있다. 면내 압축 및 전단하중은 적층복합 판의 고유진동수와 진동 모우드를 변화시키고 압축 하중의 증가는 압축 하중이 임계 좌굴하중에 도달하여 진동수가 0 이 될 때 까지 진동수를 감소시킨다. 면내 전단하중의 작용은 그렇지 않은 경우에 비하여 진동수를 증가시켰다. 또한 진동수와 면내 하중 관계 곡선의 교차는 적층 복합 보강판의 진동 모우드를 교체 시킨다. 본 연구에서 제시한 쉘 요소로 적층 복합 보강판을 해석한 결과 참고문헌과 비교하여 매우 정확한 결과를 나타내었다. 그러므로 보강된 적층 복합 판의 면내 전단 및 압축하중의 종류와 크기는 특정한 진동수와 모우드 형상의 조절을 위해 적절하게 선택되어야 한다. 고유치 문제를 풀기 위하여 Lanzcos 방법을 사용하였다.