• Title/Summary/Keyword: strain recovery ratio

Search Result 23, Processing Time 0.035 seconds

Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine (줄기 엽채소의 기계적 파지시 리올로지 특성)

  • Jun, Hyeon-Jong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

The Physical Properties of Filling Batt Using Polyester Yarn (Polyester사를 이용한 충전용 솜사의 물성)

  • Park, Myung-Soo
    • Fashion & Textile Research Journal
    • /
    • v.9 no.3
    • /
    • pp.347-350
    • /
    • 2007
  • To analyse basic properties for making packing batt according to doubling condition, packing batt yarn, of $300^D$, $900^D$, $3600^D$ made from DTY yarn $150^D$/48 were produced from KTDI. The results are as follows: The birefringence of the sample yarn increased with increasing the annealing temperature and denier. The initial modulus of the sample yarn decreased with increasing the annealing temperature and denier. The higher than annealing temperature of $160^{\circ}C$, initial modulus of the sample are equilibrated. The strain recovery ratio of samples decreased with increasing the annealing temperature and denier. The lower than annealing temperature of $140^{\circ}C$, strain recovery ratio of the sample are decreased Where the $900^D$, $3600^D$ yarns are at $100^{\circ}C$ the specific bending rigidity value obtained is 0.65kgf/d but the twisted yarn (3,600) obtained 0.006 ($gfcm^2/tex^2$). However, where the heat temperature is $160^{\circ}C$, specific bending rigidity value obtained 0.003($gfcm^2/tex^2$).

Comparative Study on Mechanical Behavior after Deformation Recovery of Polymeric Foam for Ships and Offshore Structures (폴리머 폼의 선박 및 해양구조물 적용을 위한 변형 회복 후 기계적 거동 특성 분석)

  • Kim, Seul-Kee;Kim, Jong-Hwan;Lee, Jeong-Ho;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.195-200
    • /
    • 2016
  • In this study, compression tests for the polyisocyanurate foam which is recognized as the insulation material for the storage tank of the liquefied natural gas (LNG) were carried out for investigation of the material characteristic of mechanical behavior. Deformation recovery ratio according to the various initial deformation levels were estimated and the mechanical behavior of foams that are experienced compressive deformation was also obtained experimentally. The test results were analyzed based on the conditions of initially applied strain level and engineering strain rate.

The High Temperature Deformation Behavior of the Wrought Superalloy 718 (단조용 초내열 718 합금의 고온 변형 거동)

  • Na, Y.S.;Choe, S.J.;Kim, H.M.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In order to understand the high temperature deformation behavior of superalloy 718, a rotating grade 718 alloy has been compression tested to about 0.7 upset ratio at $927{\sim}1066^{\circ}C$ temperature range and $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ strain rate. The maximum flow stress was increased with increasing strain rate, and similar behavior was observed with decreasing temperature. At low temperature and high strain rates other than $5{\times}10^{-1}sec^{-1}$, strain softening was occurred mainly by dynamic recovery and deformation twinning processes, while at high temperature and low strain rates strain softening was offseted by dynamic recrystallization. At $5{\times}10^{-1}sec^{-1}$, strain hardening was occurred due to work hardening of the dynamic recrystallized grains. Strain rate sensitivity, m, was varied with strain rates. In the case of lower strain rate tests, m was measured as 0.3 and it was observed that the deformation was mainly controlled by dynamic recrystallization. At higher strain rate, m was lowered to 0.1 and the deformation was controlled by the dynamic recovery and the deformation twinning processes.

  • PDF

Softening-hardening Mechanisms in the Direct Hot-extrusion of Aluminium Compacts

  • Zubizarreta, C.;Arribas, I.;Gimenez, S.;Iturriza, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.718-719
    • /
    • 2006
  • Two different commercial aluminium powder grades have been densified by direct hot extrusion. The extrusion temperature was $425^{\circ}C$, with an extrusion ratio of 1:16. Prior to extrusion, some green compacts were pre-sintered ($500^{\circ}C$). The evolution of the extrusion load during the process and the hardness of the final products have been investigated. Additionally, microstructural characterization by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD) was carried out. The obtained results evidence grain refinement. Additionally, inter-metallic precipitation, dynamic recovery and geometric dynamic recrystallization take place depending on some process variables, powder composition, heat treatment, strain $\ldots$

  • PDF

Detection of the Recovery Substance for Cell Divison in UV-Irradiated Escherichia coli B -Stabilization of the Active Substance by Magnesium- (자외선 조사한 대장균 B 주의 세포분열 회복활성물질 -Magnesium에 의한 활성물질의 안정화-)

  • Song, Bang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.3
    • /
    • pp.165-173
    • /
    • 1979
  • Recovery component for cell division in UV-irradiated E. coli B was detected with use of the cell extract of E. coli B/r which is a resistant mutant of E. coli B against UV-irradiation. The active substance was non-dialyzable and increased the activity by adding B-NAD remarkably. One more factor for increasing or promoting the restoration recognized was magnesium. Magnesium was effective to stabilze the substance in procedure of isolation. Two active substances were obtained from sucrose gradient centrifugation. One of them was recovred from the botton area and the other from top area just below below surface. the former was not stabilized by magnesium, while the latter stabilized the activity by it remarkably. The former which did not require magnesium was insensitive to protease and the latter which required magnesium was sensitive to it. Both were insensitive to RNase and DNase. Recovery ratio was doubled by using nitrogen gas than aeration in purification process. DNA-ligase less mutant was revealed same activity on it's recovery ratio with the parent strain of E. coli K-12. The active substance stimulating the filament cell may exist as a complex which is inactivated easily in the dissociated state ana requrie B-NAD or magnesium.

  • PDF

A Study on Stress Recovery Analysis of Dimensionally Reducible Composite Beam Structure with High Aspect Ratio using VABS (VABS를 이용한 높은 세장비를 가진 복합재료 보 구조의 차원축소 및 응력복원 해석기법에 대한 연구)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.405-411
    • /
    • 2016
  • This paper presented the theory related to a two dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite beam with initial twist and high aspect ratio. Using VABS including related theory, preceding research data of the composite wing structure has been modeled and compared. Cross-sectional analysis was performed and 1-D beam was modeled at cutting point including all the details of real geometry and material. The 3-D strain distribution and margin of safety at recovery point was calculated based on the global behavior of the 1-D beam analysis and visualize numerical results.

Comparison of Virulence between Five Strains of Cryptococcus Species Complex in a Rat Model

  • Park, Gyu-Nam;Kim, Sun-Young;Kim, Hye-Ran;Jung, Bo-Kyung;An, Dong-Jun;Hong, Seung-Bok;Chang, Kyung-Soo
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.183-195
    • /
    • 2018
  • Cryptococcosis, which is caused by the Cryptococcus species complex (including Cryptococcus neoformans and Cryptococcus gattii), is well known as one of the most important medical problems. However, the of the Cryptococcus species complex is still limited to pneumonia and meningitis. In particular, the differences in virulence among the five major serotypes of the Cryptococcus species complex are not fully understood. To elucidate the virulence of the Cryptococcus species complex when it is disseminated hematogenously, rats were infected by different strains of the Cryptococcus species serotype, and their histopathological characteristics were compared after infection. The cumulative mortality ratio of rats infected with serotype B strain was slightly higher than in the other experimental groups. In addition, the average recovery of the Cryptococcus species complex from rats infected with serotype B strain was significantly higher than in the other groups in almost all organ samples except spleen. The recovery of the Cryptococcus species complex was associated with the severity of histopathological lesions, including bleeding, inflammation, and tissue damage in all organs. In rats infected with serotype B strain, the virulence was the most severe, especially in the lungs and liver. These results indicate that the pathophysiology of the Cryptococcus species complex infection differs according to serotype.

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Analysis of Joining Strength in Electromagnetic Joining of Metals to High Toughness Polymers (금속과 고분자 재료의 접합강도 해석)

  • Son, Hui-Sik;Kim, Nam-Hwan;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.110-116
    • /
    • 1992
  • Electromgnetic joining of aluminum alloy tubes to high toughness polyurethane rubber cores is studied in order to estimate the joining strength and to analyze the effect of the process variables. The equation which can estimate the joining strength is proposed under considering the elastic recovery of the polyurethane core and the radial shrinkage of the core by pulling it axially. The obtained results are as follows : 1) The joining strength is mainly dependent on the magnitude of residual elastic strain of the polyurethane core. 2) The radial shrinkage (residual strain reduction) of the core during the axial pulling causes the joining strength to decrease severely. The equation for the reduced axial strength is proposed and it is found that the estimated values agree well with experimental results. 3) The magnitude of radial shrinkage could be reduced for the smaller value of ratio l/r. 4) The joining strength in metal/polymer joining increases as the friction coefficient increases. But its effect of friction coefficient is insignificant in comparison with the case of metal/metal joining.

  • PDF