• 제목/요약/키워드: strain plane

검색결과 994건 처리시간 0.023초

Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law

  • Ootao, Yoshihiro;Ishihara, Masayuki
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.421-442
    • /
    • 2013
  • This paper is concerned with the theoretical treatment of transient thermoelastic problems involving a functionally graded hollow cylinder with piecewise power law due to asymmetrical heating from its surfaces. The thermal and thermoelastic constants of each layer are expressed as power functions of the radial coordinate, and their values continue on the interfaces. The exact solution for the two-dimensional temperature change in a transient state, and thermoelastic response of a hollow cylinder under the state of plane strain is obtained herein. Some numerical results for the temperature change and the stress distributions are shown in figures. Furthermore, the influence of the functional grading on the thermal stresses is investigated.

유한요소법을 이용한 면심입방정금속의 변형 집합조직 예측 (Prediction of Deformation Texture for FCC Metals Using the Finite Element Method)

  • 권재욱;정효태;오규환;이동녕
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.229-242
    • /
    • 1994
  • An approximate procedure based on a combination micro-macroscopic theories of plasticity for predicting the crystallographic texture during the plane strain forming of fcc metals has been developed. This procedure is divided into two steps. Firstly, we extract the history of the deformation gradient at all deformed elements with a elasto-plastic finite element method using isotropic plasticity model. Secondly, we use this deformation gradient history to predict the crystallographic deformation texture based on the Bishop-Hill theory. Renouard and Wintenberger' method is chosen for selecting the active slip systems. The predicted results have been compared with reported experimental results. The calculated results are in good agreement with their results.

  • PDF

복합보강재를 이용한 보강점성토의 거동 (Behavior of Geosynthetic-Reinforced Clay)

  • 노한성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 토목섬유 특별세미나
    • /
    • pp.73-78
    • /
    • 2000
  • The reinforced soil has been widely used for constructing retaining walls and embankment with steep slope. However, the benefits of soil reinforcing are often-restricted by a lack of good quality backfill material. In this study, plane strain compression tests were carried out to study the effects of preloading on the behavior of geosynthetic-reinforced saturated clay. For the unreinforced and reinforced soil, drained and undrained shearing tests were peformed after anisotropic consolidation in a constant strain rate. A preoading test was carried out by preloading, creep, unloading, aging and undrained shearing after anisotropic consolidation(K=0.3, σ'₃=50 kPa). It was observed that a reinforced clay, Kanto loam, can have a great initial secant modulus in undraind condition by well compaction and over consolidation. The results shown that the increasing of drained strength should be used to apply a large preloading in the case of reinforced clay.

  • PDF

철근콘크리트 부재의 핀칭 메커니즘에 대한 연구 (Pinching Mechanism of Reinforced Concrete Elements)

  • 김지현;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.482-485
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. These hysteretic loops can exhibit strength deterioration, stiffness degradation, and a pinched shape. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" in the post-yield hysteretic loops. When the steel grid was set at a 45 degree angle to the shear plane, there was no pinching effect and no strength deterioration. However, when the steel grid was set parallel to the shear plane, there was a severe pinching effect and severe strength deterioration with increasing shear strain magnitude. In this paper, two RC elements subjected to revered cyclic shear stresses are considered to study the effect of the steel grid orientation. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops is studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

평면 변형 인발의 극한 해석 (Limit Analysis of Plane Strain Drawing)

  • 김병민;최인근;최재찬;이종수
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1407-1416
    • /
    • 1991
  • 본 연구에서는 Liu의 수식화를 바탕으로 가공 경화성을 고려하여 수식화를 재 구성하고, 유한요소 프로그램을 개발하여 평면 변형 인발문제를 극한 해석함으로써, 성형에 필요한 한계 하중 및 최적 속도장을 직접적으로 구하였다.수렴되어진 최적 속도장으로 각 요송에서의 변형률 속도, 변형률 및 격자 변형등을 수치적으로 계산함 으로써 가공에 따른 변형 특성도 파악하였다. 한계 하중은 항공기 구조용 소재인 알 루미늄 6061 재료를 이용하여 판재 인발 실험을 행함으로써 얻은 결과치와 비교 검토 하였으며, 유동 특성을 관찰하기 위하여 격자 왜곡(grid distortion) 실험을 하여 얻 은 변형 패턴과 수치 계산에서 구한 격자변형 패턴을 상호 비교하였다.

Buckling of plates including effect of shear deformations: a hyperelastic formulation

  • Musa, Idris A.
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.1107-1124
    • /
    • 2016
  • Consistent finite strain Plate constitutive relations are derived based on a hyperelastic formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has been expressed in term of a deformation tensor associated with the deformation and stretches of an embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under uni-axial compression force are presented.

특이 접촉응력 문제의 형상 최적화 (Geometric Optimization Involving Contact Stress Singularities)

  • 박정선;이수용
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.180-188
    • /
    • 1996
  • The stress singularity of a sharp wedge contacting a half plane can be avoided by changing the wedge shape. Shape optimization is accomplished with the geometric strain method (GSM), an optimality criterion method. Several numerical examples are provided for different materials in the wedge and half plane to avoid stress singularity neal the sharp corner of the wedge. Optimum wedge shapes are obtained and critical corner angles are compared with the angles from analytical contact mechanics. Numerical results are well matched to analytical and experimental results. It is shown that shape optimization by the geometric strain method is a useful tool to reshape the wedge and to avoid a stress singulatiry. The method applies to more general geometries where the singular behavior would be difficult to avoid by classical means.

다구치 직교배열을 이용한 평면변형률 장출실험용 금형의 최적설계 (Optimization of the tool geometry of PSST using taguchi's orthogonal matrix)

  • 김영석
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2073-2080
    • /
    • 1997
  • Recently, the plane strain puch stretching test(called PSST) has been developed and used successfully in the evaluation of the press formability of automotive steel sheets. In this paper, the optimum punch geometry of the original PSST tool was investigated by the FEM analysis. The puch length, crown and corner radius are chosen to be optimized according to the Taguchi's experiment technique with the $L_4$ orthogonal array.

연화부를 포함한 판재의 항복거동과 항복강도 (Yielding behavior and yield strength of plate structure containing softened region)

  • 배강열;김희진;이태열;엄동석
    • Journal of Welding and Joining
    • /
    • 제8권3호
    • /
    • pp.79-88
    • /
    • 1990
  • Welded joint often contains soft or softened regions such as the HAZ of TMCP steel welded with high heat input. In this study, the equivalent yield strength of plate structure containing softened region was predicted by FEM analysis, and its incremental behavior was explained with the results of the analysis. The calculated results of yield strength indicated the following for the plate structures. 1) As the softened region starts to yield, shear stress begins to build up along the boundary between base metal and softened region. This results in multi-axial stress condition which gives restraint on the softened region. 2) Restraint effect has a significant influence on the distribution of the shear stress, the nominal stress, and the strain. 3) The yielding behavior of softened region becomes the same as that of base metal when both ratios of length to width and thickness to width of softened region are larger than 30 and 13 respectively.

  • PDF

비축대칭 형상의 단조 공정 설계에 관한 연구 (A Study on the Process Design of Non-Axisymmetric Forging Components)

  • Kim, Y.H.;Bae, W.B.;Park, J.H.
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.57-68
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to predict forging load, die-cavity filling, preform in non-axisymmetric forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner, plane-strain part in lateral. The plane-strain and axisymmetric parts are combined by building block method. And the total energy is computed through combination of three deformation parts. A dumbbell-type preform has been obtained from height and volumetric compensations of the billet based on the backward simulation. Experimetns have been carried out with pure plasticine at room temperature. Theoretical predictions are in good agreement with expereimental results.

  • PDF