• Title/Summary/Keyword: strain penetration

Search Result 147, Processing Time 0.021 seconds

An Analysis of Cone Penetration Based on Arbitrary Larangian-Eulerian Method (Arbitrary Lagrangian-Eulerian 기법에 의거한 콘 관입 해석)

  • Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.85-98
    • /
    • 2001
  • Cone penetration was analyzed by arbitrary Lagangian-Eulerian(ALE) method. In order to simulate full penetration, steady state analyses were performed using ABAQUS/Explicit, which models upward flow of soil layers. In the analysis of homogeneous layer it was found that the paths and the strain of soil particles were consistent with the result of the strain path method and that the ultimate resistance were reasonably evaluated. The cone penetration through different soil layers was also analyzed and that showed the transfer of cone resistance. The steady state ALE analysis could perform full penetration through the layered soils.

  • PDF

Strain penetration of high-strength steel bars anchored in reinforced concrete beam-column connections

  • Li, Ling;Zheng, Wenzhong;Wang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.367-382
    • /
    • 2019
  • This paper presents experimental and analytical investigations on additional fixed-end rotations resulting from the strain penetration of high-strength reinforcement in reinforced concrete (RC) beam-column connections under monotonic loading. The experimental part included the test of 18 interior beam-column connections with straight long steel bars and 24 exterior beam-column connections with hooked and headed steel bars. Rebar strains along the anchorage length were recorded at the yielding and ultimate states. Furthermore, a numerical program was developed to study the effect of strain penetration in beam-column connections. The numerical results showed good agreement with the test results. Finally, 87 simulated specimens were designed with various parameters based on the test specimens. The effect of concrete compressive strength ($f_c$), yield strength ($f_y$), diameter ($d_b$), and anchorage length ($l_{ah}$) of the reinforcement in the beam-column connection was examined through a parametric study. The results indicated that additional fixed-end rotations increased with a decrease in $f_c$ and an increase in $f_y$, $d_b$ and $l_{ah}$. Moreover, the growth rate of additional fixed-end rotations at the yielding state was faster than that at the ultimate state when high-strength steel bars were used.

An analytical investigation of soil disturbance due to sampling penetration

  • Diao, Hongguo;Wu, Yuedong;Liu, Jian;Luo, Ruping
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.743-755
    • /
    • 2015
  • It is well known that the quality of sample significantly determines the accuracy of soil parameters for laboratory testing. Although sampling disturbance has been studied over the last few decades, the theoretical investigation of soil disturbance due to sampling penetration has been rarely reported. In this paper, an analytical solution for estimating the soil disturbance due to sampling penetration was presented using cavity expansion method. Analytical results in several cases reveal that the soil at different location along the sample centerline experiences distinct phases of strain during the process of sampling penetration. The magnitude of induced strain is dependent on the position of the soil element within the sampler and the sampler geometry expressed as diameter-thickness ratio D/t and length-diameter ratio L/D. Effects of sampler features on soil disturbance were also studied. It is found that the induced maximum strain decreases exponentially with increasing diameter-thickness ratio, indicating that the sampling disturbance will reduce with increasing diameter or decreasing wall thickness of sampler. It is also found that a large length-diameter ratio does not necessarily reduce the disturbance. An optimal length-diameter ratio is suggested for the further design of improved sampler in this study.

Strain-rate effects on interaction between Mode I matrix crack and inclined elliptic inclusion under dynamic loadings

  • Li, Ying;Qiu, Wan-Chao;Ou, Zhuo-Cheng;Duan, Zhuo-Ping;Huang, Feng-Lei
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.801-814
    • /
    • 2012
  • The strain rate effects on the interaction between a Mode I matrix crack and an inclined elliptic matrix-inclusion interface under dynamic tensile loadings were investigated numerically, and the results are in agreement with previous experimental data. It is found, for a given material system, that there are the first and the second critical strain rates, by which three kinds of the subsequent crack growth patterns can be classified in turn with the increasing strain rate, namely, the crack deflection, the double crack mode and the perpendicular crack penetration. Moreover, such a crack deflection/penetration behavior is found to be dependent on the relative interfacial strength, the inclined angle and the inclusion size. In addition, it is shown that the so-called strain rate effect on the dynamic strength of granule composites can be induced directly from the structural dynamic response of materials, not be entirely an intrinsic material property.

Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile

  • Islam, Md. Jahidul;Liu, Zishun;Swaddiwudhipong, Somsak
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.111-123
    • /
    • 2011
  • Severe element distortion problem is observed in finite element mesh while performing numerical simulations of high velocity steel projectiles penetration/perforation of concrete targets using finite element method (FEM). This problem of element distortion in Lagrangian formulation of FEM can be resolved by using element erosion methodology. Element erosion approach is applied in the finite element program by defining failure parameters as a condition for element elimination. In this study strain parameters for both compression and tension at failure are used as failure criteria. Since no direct method exists to determine these values, a calibration approach is used to establish suitable failure strain values while performing numerical simulations of ogive-nose steel projectile penetration/perforation into concrete target. A range of erosion parameters is suggested and adopted in concrete penetration/perforation tests to validate the suggested values. Good agreement between the numerical and field data is observed.

Impact damage model of projectile penetration into concrete target (발사체 관통 콘크리트 충격손상 모델)

  • Park, Tae-Hyo;Noh, Myung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.633-636
    • /
    • 2006
  • Impact damage modeling of concrete under high strain rate loading conditions is investigated. A phenomenological penetration model that can account for complicated impact and penetration process such as the rate and loading history response of concrete, the microstructure-penetration interaction etc. is discussed. Constitutive law compatible with Second Law of thermodynamics and coupled damage and plasticity modelling based on continuum damage mechanics are also examined. The purpose of this paper is preliminarily to study with respect to impact and penetration models for concrete before the development of that model.

  • PDF

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures

  • Hong, Won-Taek;Byun, Yong-Hoon;Kim, Sang Yeob;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.197-216
    • /
    • 2016
  • The increased speed of a train causes increased loads that act on the track substructures. To ensure the safety of the track substructures, proper maintenance and repair are necessary based on an accurate characterization of strength and stiffness. The objective of this study is to develop and apply a cone penetrometer incorporated with the dynamic cone penetration method (CPD) for investigating track substructures. The CPD consists of an outer rod for dynamic penetration in the ballast layer and an inner rod with load cells for static penetration in the subgrade. Additionally, an energy-monitoring module composed of strain gauges and an accelerometer is connected to the head of the outer rod to measure the dynamic responses during the dynamic penetration. Moreover, eight strain gauges are installed in the load cells for static penetration to measure the cone tip resistance and the friction resistance during static penetration. To investigate the applicability of the developed CPD, laboratory and field tests are performed. The results of the CPD tests, i.e., profiles of the corrected dynamic cone penetration index (CDI), profiles of the cone tip and friction resistances, and the friction ratio are obtained at high resolution. Moreover, the maximum shear modulus of the subgrade is estimated using the relationships between the static penetration resistances and the maximum shear modulus obtained from the laboratory tests. This study suggests that the CPD test may be a useful method for the characterization of track substructures.

Applicability of Mini-Cone Penetration Test Used in a Soil Box

  • Sugeun Jeong;Minseo Moon;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2023
  • In this study, we conducted verification of key influencing factors during cone penetration testing using the developed Mini Cone Penetration Tester (Mini-CPT), and compared the experimental results with empirical formulas to validate the equipment. The Mini-CPT was designed to measure cone penetration resistance through a Strain Gauge, and the resistance values were calibrated using a Load Cell. Moreover, the influencing factors were verified using a model ground constituted in a soil box. The primary influencing factors examined were the boundary effect of the soil box, the distance between cone penetration points, and the cone penetration speed. For the verification of these factors, the experiment was conducted with the model ground having a relative density of 63.76% in the soil box. It was observed that the sidewall effect was considerably significant, and the cone penetration resistance measured at subsequent penetration points was higher due to the influence between penetration points. However, within the speed range considered, the effect of penetration speed was almost negligible. The measured cone penetration resistance was compared with predicted values obtained from literature research, and the results were found to be similar. It is anticipated that using the developed Mini-CPT for constructing model grounds in the laboratory will lead to more accurate geotechnical property data.