• 제목/요약/키워드: strain of reinforcement

검색결과 616건 처리시간 0.023초

가열조건에 따른 철근콘크리트 부재의 휨 강도에 관한 해석적 연구 (Numerical Study on Flexural Strength of Reinforced Concrete members Exposed to Fire)

  • 이상호;허은진
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.195-205
    • /
    • 2001
  • 본 연구는 화재에 노출된 철근콘크리트 부재의 휭 강도를 평가하기 위한 해석적 연구로서, 고온을 받는 단면에 대한 모멘트-곡률 관계를 구하는 것이다. 해석적 방법으로는 부재 단면에 대한 열전도 해석을 수행한 후 여러 가지 가열 조건에 대한 콘크리트와 철근의 응력-변형률 관계를 이용하여 모멘트-곡률 관계의 해석을 수행한다. 본 연구의 해석 결과는 다음과 같다. (1) 고온에 대한 철근콘크리트 부재의 잔존 휭 강도는 가열시간, 콘크리트 피복두께, 인장철근비의 영향을 받는다. (2) 고온을 받은 후의 잔존 휭 강도는 최소 철근비일 때는 상온시의 강도를 회복하지만, 최대 철근비의 50%일 때와 최대 철근비 일 때는 회복하지 않는 경향을 나타낸다. (3) 최대 철근비를 가진 철근콘크리트 부재는 가열 후 냉각상태에 대하여 철근이 항복하기 전에 콘크리트가 한계상태에 도달하는 경향을 나타낸다.

On vibrations of functionally graded carbon nanotube (FGCNT) nanoplates under moving load

  • Alaa A. Abdelrahman;Ismail Esen;Mohammed Y. Tharwan;Amr Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.395-412
    • /
    • 2024
  • This article develops a nonclassical size dependent nanoplate model to study the dynamic response of functionally graded carbon nanotube (FGCNT) nanoplates under a moving load. Both nonlocal and microstructure effects are incorporated through the nonlocal strain gradient elasticity theory. To investigate the effect of reinforcement orientation of CNT, four different configurations are studied and analysed. The FGM gradation thorough the thickness direction is simulated using the power law. In the context of the first order shear deformation theory, the dynamic equations of motion and the associated boundary conditions are derived by Hamilton's principle. An analytical solution of the dynamic equations of motion is derived based on the Navier methodology. The proposed model is verified and compared with the available results in the literature and good agreement is found. The numerical results show that the dynamic performance of FGCNT nanoplates could be governed by the reinforcement pattern and volume fraction in addition to the non-classical parameters and the moving load dimensionless parameter. Obtained results are reassuring in design and analysis of nanoplates reinforced with CNTs.

개구부가 있는 철근콘크리트 전단벽의 극한해석 (Ultimate Analysis of Reinforced Concrete Shear Walls with Opening)

  • 허남륜;유영화;김운학
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.195-205
    • /
    • 2001
  • An analytical finite element approach to nonlinear behavior of reinforced concrete shear walls with opening under monotonic loading was presented in this paper. In order to achieve the objectives of present paper, the orthogonal anisotropic models for cracked reinforced concrete element based on smeared crack concept were used as the nonlinear material models of biaxial state of stress. The stiffness of cracked concrete was evaluated through the combined use of tension and compression stiffness models in and parallel directions of crack, respectively and shear transfer effect due to the aggregate interlocking at crack surface. The stress and strain of reinforcement in concrete was evaluated using the average stress and average strain relation with bond effect. based on smeared crack concept. The diagonal reinforcing bar was modeled using truss element with bond effect. A special significance of diagonal reinforcement near opening was given to the shear wall with opening and an effective distribution of diagonal reinforcement was presented in order to give an ultimate strength increment as well as a crack control.

  • PDF

Strain monitoring of reinforced concrete with OTDR-based FBG interrogation technique

  • Dyshlyuk, Anton V.;Makarova, Natalia V.;Vitrik, Oleg B.;Kulchin, Yuri N.;Babin, Sergey A.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.343-350
    • /
    • 2017
  • An experimental study is presented of the application of fiber Bragg grating (FBG) interrogation method based on optical time-domain reflectometery (OTDR) to monitoring strain in bent reinforced concrete beams. The results obtained with the OTDR-based method are shown to agree well with the direct spectral measurements. Strain sensitivity, resolution and measurement range amounted to $0.0028dB/{\mu}strain$; $30{\mu}strain$; $4000{\mu}strain$, correspondingly. Significant differences are observed in surface and inner deformations of the test beams which can be attributed to different mechanical properties of concrete and steel reinforcement. The prospects of using OTDR-based FBG interrogation technique in real-life applications are discussed.

트러스 모델을 이용한 철근콘크리트 부재의 전단철근 및 전단균열폭의 변형 예측 (Prediction of Deformation of Shear Reinforcement and Shear Crack Width of Reinforced Concrete Members using Truss Models)

  • 김상우;이정윤
    • 한국공간구조학회논문집
    • /
    • 제4권3호
    • /
    • pp.49-56
    • /
    • 2004
  • 본 논문은 철근콘크리트 건물의 전단해석을 위하여 변환각 트러스 모델(TATM)을 사용하여 전단철근변형률과 전단균열폭과 같은 철근콘크리트 부재의 전단변형을 예측하였다. 철근콘크리트 부재의 전단변형에 대한 TATM의 타당성을 검토하기 위하여 서로 다른 전단경간비를 가지는 4개의 RC 보를 제작하고 전단 실험하였으며, 이 실험결과를 MCFT(Response- 2000), RA-STM, FA-STM 및 TATM에 의한 해석결과와 비교하였다. 제안된 모델 TATM은 다른 트러스 모델보다 전단응력-전단철근변형률 관계와 전단응력-전단균열폭 관계를 더 잘 예측하였다.

  • PDF

Design of geocell reinforcement for supporting embankments on soft ground

  • Latha, G. Madhavi
    • Geomechanics and Engineering
    • /
    • 제3권2호
    • /
    • pp.117-130
    • /
    • 2011
  • The methods of design available for geocell-supported embankments are very few. Two of the earlier methods are considered in this paper and a third method is proposed and compared with them. In the first method called slip line method, plastic bearing failure of the soil was assumed and the additional resistance due to geocell layer is calculated using a non-symmetric slip line field in the soft foundation soil. In the second method based on slope stability analysis, general-purpose slope stability program was used to design the geocell mattress of required strength for embankment. In the third method proposed in this paper, geocell reinforcement is designed based on the plane strain finite element analysis of embankments. The geocell layer is modelled as an equivalent composite layer with modified strength and stiffness values. The strength and dimensions of geocell layer is estimated for the required bearing capacity or permissible deformations. These three design methods are compared through a design example. It is observed that the design method based on finite element simulations is most comprehensive because it addresses the issue of permissible deformations and also gives complete stress, deformation and strain behaviour of the embankment under given loading conditions.

폴리머-강섬유를 혼입한 고강도 콘크리트 보의 보수·보강 (Repair and Rehabilitation of Polymer-Steel Fibrous High Strength Concrete Beams)

  • 곽계환;김원태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.135-143
    • /
    • 2002
  • This study is to investigate its use by applying stainless steel wire mash reinforcement method of construction, which is newly developed, on the high strength concrete beam mixed with polymer-steel fiber. In this test, it is investigated and observed such as follows: the ultimate load, the initial flexure crack load, the initial diagonal tension crack load, the relation between load and deflection, load-strain relation, and also crack growth and fracture aspect by increasing load. The results of this test are; first, the stainless steel wire showed some useful reinforcement effects in multiplying the steel's resisting force of moment to the tensile force of beam or slab: second, the promoting strength and internal force was made in the process of the integration at the same reaction by using the penetrating polymer-mortar with an excellent durability and physical property. On the basis of this results, because such instances in applying stainless steel wire Mash reinforcement method of construction have been few so far, through the experimental investigation such as this test over and over again, the efficient and useful method must be developed for the practice.

보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험 (Model Tests on Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers)

  • 조삼덕;이광우;오세용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.372-379
    • /
    • 2004
  • The model tests were conducted to assess the behavior characteristics of geogrid reinforced earth walls according to various surcharge loads and reinforcement spacing. The models were built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used was geogrid(tensile strength 2.26t/m). Decomposed granite soil(ML) was used as a backfill material. The LVDTs were installed on the model retaining walls to obtain the displacements of the facing. In the results, the maximum displacement of facing and tensile strain of geogrid was measured at 0.7H(H is wall height) from the bottom of reinforced wall.

  • PDF

철근콘크리트 교각 심부구속철근량의 비교연구 (comparative Study on confinement Steel Amount of RC Column Bent)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

New approach for Ductility analysis of partially prestressed concrete girders

  • Radnic, Jure;Markic, Radoslav;Grgic, Nikola;Cubela, Dragan
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.257-267
    • /
    • 2019
  • Expressions for the calculation of ductility index for concrete girders with different ratios of prestressed and classical reinforcement were proposed using load-displacement, load-strain and load-curvature relation. The results of previous experimental static tests of several large-scale concrete girders with different ratio of prestressed and classical reinforcement are briefly presented. Using the proposed expressions, various ductility index of tested girders were calculated and discussed. It was concluded that the ductility of girders decreases approximately linearly by increasing the degree of prestressing. The study presents an expression for the calculation of the average ductility index of classical and prestressed reinforced concrete girders, which are similar to the analysed experimental test girders.