• Title/Summary/Keyword: strain of reinforcement

Search Result 625, Processing Time 0.032 seconds

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

A Study on the Design Formula about Strengthening in Flexure with Steel Plate in Reinforced Concrete Beams (철근콘크리트 보의 강판 휨보강 설계식에 관한 연구)

  • Kim, Jong-Ok;Jang, Hwa-Kyun;Won, Young-Sul;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • When RC beams are strengthening in flexure with steel plate, they have initial strain due to dead load. Strain of steel used in strengthening member is zero. The effect of strengthening in flexure at member changes in accordance with the quantity of initial strain. But in most cases, Quantity of reinforcement is determined without regard to the difference of initial strain when there are calculated the strengthening in flexure at beams. Such method is possible to suggest inadequate quantity of reinforcement. Thus, the object of the study is to suggest practical design equation and reinforcement proposal using comparison and analysis reinforcement efficiency about fexural strength in case with regard and without regard to the initial strain when Re beams are strengthening in flexure with steel plate.

  • PDF

An experimental study on the effect of flexural strengthening with steel plate considering initial strain in reinforcement concrete beams (초기변형률을 고려한 철근콘크리트의 보의 강판휨보강 효과에 관한 실험적 연구)

  • Kim, Jong-Ok;Kim, Jin-Mu;Jang, Hwa-Kyun;Won, Young-Sul;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.228-236
    • /
    • 2001
  • When RC beams are strengthened for flexure with steel plate, reinforced member has initial strain due to the dead load and is subject to partial damage. Strain of steel strengthening is zero at initial state. The effect of strengthening flexural member might be influenced by the quantity of initial strain. In this study, when He beams are strengthened for flexure with steel plate, its behavior is experimentally compared for the reinforcement efficiency of members due to the existence of different levels of initial strain. It is confirmed that reinforcement efficiency varies depending on the difference of initial strain.

  • PDF

Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube (강관 내무보강 중공교각의 연성도 평가)

  • 강영종;최진유;김도연;한택희
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

Influence of External Reinforcement on Strain Characteristics of Critical Current in BSCCO Superconducting Tapes

  • Shin, Hyung-Seop;Kazumune Katagiri
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.15-19
    • /
    • 2003
  • For the purpose of standardization of the critical current measurement, it is meaningful to describe how $I_{c}$ will behave as the stress/strain level changes. In this study, strain dependencies of the critical current $I_{c}$ in Ag-alloy sheathed multifilamentary Bi(2212) and Bi(2223) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering AgMgNi alloy tapes onto single or both sides of the sample. With the external reinforcement to the Bi(2212) tape, the strength of the tapes increased but the critical current at the strain free state, $I_{c0}$ decreased in some cases. The strain for onset of the $I_{c}$ degradation, $\varepsilon$$_{\irr}$, increased with an increase of the reinforcing volume and then saturated to a certain value. The effect of external reinforcement on the degradation of $I_{c}$ due to the bending strain in the Bi(2223) tape was also examined. Contrary to the expectation, it showed a significant $I_{c}$ degradation even at a small strain of 0.4 %. The observations of damage morphologies gave a good explanation to the $I_{c}$ behavior.c/ behavior.r.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Stress-Strain Relationships of Concrete Confined by Spiral Reinforcement (나선근으로 횡보강된 콘크리트의 응력-변형도 관계)

  • 김진근;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.119-123
    • /
    • 1993
  • Axial load-strain relationships of confined concrete with spiral reinforcement were investigated. The main variables were compressive strength of concrete, spacing of hoop reinforcement, and specimen height of plain concrete. The program included tests of eleven confined specimens, and twelve plain specimens, but for all specimens no longitudinal reinforcement was provided. Load-strain curves of confined and plain concrete specimens are reporeted.

  • PDF

Effect of External Reinforcement on Stress/strain Characteristics of Critical Current in Ag Alloy Sheathed Bi-2212 Superconducting Tapes (Bi-2212 초전도 테이프에서 임계전류의 응력/변형률 특성에 미쳐는 외부강화의 영향)

  • ;K. Katagiri
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • Stress/stram dependencies of the critical current $I_c$ in AgMgNi sheathed multifilamentary Bi(2212) superconducting tapes were evaluated at 77K, 0T. The external reinforcement was accomplished by soldering Ag-Mg tapes to sin91e side or both sides of the sample. With the external reinforcement. the strength of tapes increased but $I_c$, decreased The $I_c$, degradation characteristic according to the external reinforcement was improved markedly in terms of the stress although it appeared less rectal.table on the basis of the strain. Effects of external reinforcement were discussed in a viewpoint of monitoring sensitivity of cracking in superconducting filaments by considering n-value representing the transport behavior of the current. It is closely associated with the location of them relative to the voltage-monitoring region in the tape.

  • PDF

Finite element modelling of reinforced concrete structures with laboratory verification

  • Cheng, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.593-609
    • /
    • 1995
  • The presence of reinforcement has a significant influence on the stress-strain behaviour of reinforced concrete structures, expecially when the failure stage of the structures is approached. In the present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement coefficient, Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.

A trilinear stress-strain model for confined concrete

  • Ilki, Alper;Kumbasar, Nahit;Ozdemir, Pinar;Fukuta, Toshibumi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.541-563
    • /
    • 2004
  • For reaching large inelastic deformations without a substantial loss in strength, the potential plastic hinge regions of the reinforced concrete structural members should be confined by adequate transverse reinforcement. Therefore, simple and realistic representation of confined concrete behaviour is needed for inelastic analysis of reinforced concrete structures. In this study, a trilinear stress-strain model is proposed for the axial behaviour of confined concrete. The model is based on experimental work that was carried out on nearly full size specimens. During the interpretation of experimental data, the buckling and strain hardening of the longitudinal reinforcement are also taken into account. The proposed model is used for predicting the stress-strain relationships of confined concrete specimens tested by other researchers. Although the proposed model is simpler than most of the available models, the comparisons between the predicted results and experimental data indicate that it can represent the stress-strain relationship of confined concrete quite realistically.