• 제목/요약/키워드: strain modes

검색결과 402건 처리시간 0.027초

면내회전자유도를 갖는 4절점 곡면 쉘요소 (A Four-node General Shell Element with Drilling DOFs)

  • 정근영;김재민;이은행
    • 한국지진공학회논문집
    • /
    • 제16권4호
    • /
    • pp.37-52
    • /
    • 2012
  • 이 연구에서는 감절점쉘요소의 개념에 근거한 새로운 4절점 곡면 쉘요소를 제시하였다. 회전장이 독립변수로 도입된 범함수에 의하여 면내회전자유도를 도입함으로써 개발된 쉘요소에서는 절점당 6자유도를 갖도록 하였다. 아울러 쉘요소의 면내거동 개선을 위하여 4개의 비적합변위형에 의한 비적합변위를 면내방향의 변위성분에 추가하였으며, 면외거동 개선을 위하여 대체전단변형률장이 적용되었다. 이 연구에서의 비적합변위형의 수치적 구현에 있어서 일정한 변형률상태를 표현할 수 있도록 하기 위하여 비적합변위형의 직접 수정법이 적용되었다. 이렇게 정식화된 쉘요소 강성행렬의 수치적분에 있어서는 부피적분을 위하여 9점 적분법이 사용되었다. 개발된 쉘요소는 바람직하지 못한 영에너지모드를 갖지 않으며, 일정한 변형률 상태를 표현할 수 있음을 확인하였다. 개발된 4절점 곡면 쉘 요소에 대한 다양한 수치예제를 통한 검증 결과, 전반적으로 양호한 거동을 보여주고 있음을 확인하였다.

Al7050 합금의 인장-압축거동과 성형성 간 상관관계 (Correlation Between Tensile-compressive Behavior and Formability of Al7050 Alloy)

  • 배동화;오주희;정찬욱;김정기
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.64-72
    • /
    • 2022
  • Since aluminum alloys experience both tensile and compression deformation modes during forming process, it is important to understand the role of deformation mode on the hot formability of metallic alloys. In the present work, the hot formability of Al7050 alloy was investigated by conducting both tensile and Gleeble tests at various temperatures and strain rates. Processing maps representing low efficiency regions were observed at low temperature and high strain rate in both tensile and compressive deformation modes while the maximum efficiency regions depended on different deformation modes. Moreover, samples tested at stable processing conditions presented a smaller pore fraction than those at instable conditions that resulted in crack initiation during plastic deformation. This result shows that different deformation modes during plastic forming can affect formability changes of metallic alloys. Understanding of tension-compression behaviors will help us solve this problem.

HTS 초전도 테이프의 기계-전기적 특성 평가기술 (Evaluation Technology of Mechano-Electromagnetic Properties in HTS Superconducting Tapes for Practical Applications)

  • 신형섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 초전도 자성체 연구회
    • /
    • pp.17-22
    • /
    • 2003
  • HTS superconducting tapes are now commercially available for practical applications such as magnets and cables. Since superconductors in such applications are subjected to high mechanical loads that can significantly degrade the superconducting properties, mechanical properties and the strain tolerance known as the strain effect on superconducting properties are needed to be estimated for developing superconducting devices. The progress in technology achieved in the field of strain effect evaluation on the critical current of HTS tapes in various deformation modes is discussed in this study.

  • PDF

단조형식에 따른 단조품과 금형의 탄성 변형에 관한 연구 (The elastic strain analysis of forged product and die according to the forging mode)

  • 이대근;이영선;김원일;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.586-591
    • /
    • 2001
  • In the cold forging, elastic deformation of the die has been investigated to improve the accuracy of cold forged parts with F.E.M analysis using DEFORM, and with experiments using strain gauges. In the experiments, initial billet was selected to easily find the effect of elastic deformation according to the forging modes, extrusion and upsetting type, and only extrusion type. Elastic deformation of the die can be obtained by the signal from the strain gauges and this signal can be amplified by data acquisition system during the process. In the F.E.M analysis, two types of analysis are used to predict elastic strain of the die. To improve an accuracy of forged product and die dimension, this study compared with strain distribution between experiment and F.E.M analysis. As a result, the history of the deformation of the die and elastic recovery of forged product can be obtained by the elastic strain analysis of forged product and die according to the forging modes.

  • PDF

A compressible finite element model for hyperelastic members under different modes of deformation

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.227-245
    • /
    • 2006
  • The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

Mechanics of a variable damping self-centering brace: Seismic performance and failure modes

  • Xie, Xing-Si;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 2019
  • The force-deformation behavior, strain distribution and failure modes of a variable damping self-centering brace (VD-SCB) are theoretically analyzed, experimentally studied, and numerically simulated to guide its design. The working principle of the brace is explained by describing the working stages and the key feature points of the hysteretic curve. A large-scale brace specimen was tested under different sinusoidal excitations to analyze the recentering capability and energy dissipation. Results demonstrate that the VD-SCB exhibits a full quasi-flag-shaped hysteretic response, high ultimate bearing capacity, low activation force and residual deformation, and excellent recentering and energy dissipation capabilities. Calculation equations of the strain distribution in different parts of the brace are proposed and are compared with the experimental data and simulated results. The developments of two failure modes are compared. Under normal circumstances, the brace fails due to the yielding of the spring blocking plates, which are easily replaced to restore the normal operating conditions of the brace. A brief description of the design procedure of the brace is proposed for application.

단순보 모드형상을 이용하여 변형률 신호에서 동적변위 응답 추정 (Estimation of Dynamic Displacements from Strain Signal using Mode Shapesof Simply Supported Beam)

  • 신수봉;이선웅;한아름샘;김현수;김희동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.326-331
    • /
    • 2009
  • An algorithm is proposed for computing dynamic displacements of a bridge using FBG sensors. An existing algorithm for estimating dynamic displacements of a simply supported beam through mode superposition is extended and applied to various types of bridges with bending and torsional modes. The proposed algorithm is examined through field tests on a suspension span steel deck plate box girder bridge. Guidelines are provided for determining the number of modes and the number of strain gages to be used.

  • PDF

이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성 (Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2)

  • 황동진;김정수;길상인;김태권;박정
    • 대한기계학회논문집B
    • /
    • 제30권9호
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰 (A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System)

  • 이안성;하진웅;최동훈
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.