• Title/Summary/Keyword: strain developments

Search Result 39, Processing Time 0.022 seconds

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.

A Study on the strain hardening of tube hydroforming according to process (튜브 액압성형품의 공정단계별 가공 경화 특성 연구)

  • Park, H.K.;Yim, H.S.;Yi, H.K.;Jeon, D.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.325-328
    • /
    • 2008
  • In recent years, developments of light weight vehicle are one of the most important issues in automotive industry. It is important to know the variations of the mechanical properties in the hydro forming process for the safe and durable design purposes. Generally, tube hydroforming process consists of three main processes such as bending, preforming, and hydroforming. It means that the strain hardening histories of final products are nonlinear. In this study, strain hardening behavior during hydroforming has been investigated by hydroforming of engine cradle as a model process. The variation of mechanical properties such as local hardness and strength were used as an index of strain hardening during respective processes. The correlationship between strength and hardness obtained from tensile test has been equivalently converted into correlation between hardness and measured strain.

  • PDF

Recent Progress in Strain Development of Zymomonas mobilis for Lignocellulosic Ethanol Production (Zymomonas mobilis를 이용한 목질계 에탄올 생산을 위한 균주 개선에 관한 연구 동향)

  • Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.135-145
    • /
    • 2019
  • Zymomonas mobilis has been recognized as a potential industrial ethanologen for many decades due to its outstanding fermentation characteristics, including high ethanol tolerance, fast sugar uptake rate, and high theoretical ethanol yield. With the emergence of the postgenomic era and the recent announcement of DuPont's world largest cellulosic ethanol production process, research on this bacterium has become even more important to harness successful application not only for use in the bioethanol process but also in other biochemical processes, which can be included in bio-refinery. As an important industrial microorganism, Z. mobilis will likely be exposed to various stressful environments, such as toxic chemicals, including the end-product ethanol and fermentative inhibitory compounds (e.g., furan derivatives, organic acids, and lignin derivatives in pretreatment steps), as well as physical stresses, such as high temperature during large-scale ethanol fermentation. This review focuses on recent information related to the industrial robustness of this bacterium and strain development to improve the ethanol yield and productivity in the lignocellulosic ethanol process. Although several excellent review articles on the strain development of this bacterium have been published, this review aims to fill gaps in the literature by highlighting recent advances in physiological understanding of this bacterium that may aid strain developments and improve the ethanol productivity for lignocellulosic biomass.

Fundamental Research of Strain-based Wireless Sensor Network for Structural Health Monitoring of Highrise building (초고층 건물의 건전성 감시를 위한 변형률 기반 무선 센서 네트워크 기법의 기초적 연구)

  • Jung, Eun-Su;Park, Hyo-Seon;Choi, Suk-Won;Cha, Ho-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.429-432
    • /
    • 2007
  • For smart structure technologies, the interests in wireless sensor networks for structural health monitoring are growing. The wireless sensor networks reduce the installation of the wire embedded in the whole structure and save the costs. But the wireless sensor networks have lots of limits and there are lots of researches and developments of wireless sensor and the network for data process. Most of the researches of wireless sensor network is applying to the civil engineering structure and the researches for the highrise building are required. And strain-based SHM gives the local damage information of the structures which acceleration-based SHM can not. In this paper, concept of wireless sensor network for structural health monitoring of highrise building is suggested. And verifying the feasibility of the strain-based SHM a strain sensor board has developed and tested by experiments.

  • PDF

Applications of the ANFIS and LR in the prediction of strain in tie section of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jameel, Mohammed;Garmasiri, Karim
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.243-259
    • /
    • 2013
  • Recent developments in Artificial Intelligence (AI) and computational intelligence have made it viable in the construction industry and structural analysis. This study usesthe Adaptive Network-based Fuzzy Inference System (ANFIS) as a modelling tool to predict the strain in tie section for High Strength Self Compacting Concrete (HSSCC) deep beams. 3773 experimental data were collected. The input data andits corresponding strains in tie section as output data were recorded at all loading stages. Results from ANFIS are compared with the classical linear regression (LR). The comparison shows that the ANFIS's results are highly accurate, precise and satisfactory.

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Analysis of Microscopic Plastic Behaviors of metals considering slip deformation of crystals(I) (결정의 슬립을 고려한 금속의 미시적 소성변형거동 해석(I))

  • 김정석;정기조;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.55-61
    • /
    • 1996
  • Finite element calculations are performed for crystalline solids subjected to plane strain tensile loading. Using Asaro's double slop model, shearband developments in single crystals are analyzed. The effect of various rate sensitivities and latent hardening parameters on microscopic plastic behavior was clarified. Moreover the deformation behavior of polycystals which have grain boundaries was compared to that of single crystals.

  • PDF

DESIGN CONSIDERATIONS AND MONITORING RESULTS OF AN UNDERWATER EARTH DAM

  • Van Impe, W.F.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1210-1224
    • /
    • 2009
  • The present paper illustrates the outcome of the monitoring of the consolidation behavior of a soft foundation soil under a large submerged sand embankment. Measurements of settlements and excess pore water pressures showed a good agreement with predictions evaluated using the large strain consolidation theory. Soft soil improvement by means of deep mixing has been optimized. Moreover, the principles and developments of underwater geosynthetics applications are discussed.

  • PDF

SELECTED ADVANCES IN SHEET MATERIAL FORMING

  • Lee, Daeyong-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.1-9
    • /
    • 1994
  • Three recent developments made at Rensselaer in sheet material forming processes are briefly reviewed in this paper. These advances represent three broad disciplines of Process Simulation, Forming Processes, and Computer-Aided Measurement Methods. The first development deals with simple and quick computer simulation of 2D sheet forming process without depending on popular finite element analysis methods. An analytical method based on a thin shell theory accounts for bending and unbending effects, and is capable of simulating practical sheet metal forming processes under the plane strain condition. The second area is concerned with innovative methods to improve formability of sheet materials by temperature gradient forming. The drawing limit is increased by such an improved temperature gradient forming process. The third and final area deals with a totally new experimental technique to capture 3D geometry data and measure strain distributions of sheet metal parts using a digital 35mm SLR camera.