Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.1.135

Recent Progress in Strain Development of Zymomonas mobilis for Lignocellulosic Ethanol Production  

Jeon, Young Jae (Department of Microbiology, Pukyong National University)
Publication Information
Journal of Life Science / v.29, no.1, 2019 , pp. 135-145 More about this Journal
Abstract
Zymomonas mobilis has been recognized as a potential industrial ethanologen for many decades due to its outstanding fermentation characteristics, including high ethanol tolerance, fast sugar uptake rate, and high theoretical ethanol yield. With the emergence of the postgenomic era and the recent announcement of DuPont's world largest cellulosic ethanol production process, research on this bacterium has become even more important to harness successful application not only for use in the bioethanol process but also in other biochemical processes, which can be included in bio-refinery. As an important industrial microorganism, Z. mobilis will likely be exposed to various stressful environments, such as toxic chemicals, including the end-product ethanol and fermentative inhibitory compounds (e.g., furan derivatives, organic acids, and lignin derivatives in pretreatment steps), as well as physical stresses, such as high temperature during large-scale ethanol fermentation. This review focuses on recent information related to the industrial robustness of this bacterium and strain development to improve the ethanol yield and productivity in the lignocellulosic ethanol process. Although several excellent review articles on the strain development of this bacterium have been published, this review aims to fill gaps in the literature by highlighting recent advances in physiological understanding of this bacterium that may aid strain developments and improve the ethanol productivity for lignocellulosic biomass.
Keywords
Bacterial physiology; industrial robustness; lignocellulosic ethanol; strain developments; Zymomonas mobilis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R. 2012. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl. Microbiol. Biotechnol. 95, 189-199.   DOI
2 Hermans, M. A., Neuss, B. and Sahm, H. 1991. Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J. Bacteriol. 173, 5592-5595.   DOI
3 Horbach, S., Neuss, B. and Sahm, H. 1991. Effect of azasqualene on hopanoid biosynthesis and ethanol tolerance of Zymomonas mobilis. FEMS Microbiol. Lett. 79, 347-350.   DOI
4 Ingram, L. O. 1986. Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol. 4, 40-44.   DOI
5 Ingram, L. O. 1989. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9, 305-319.   DOI
6 Yomano, L. P., York, S. W. and Ingram, L. O. 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20, 132-138.   DOI
7 Zhang, K., Shao, H., Cao, Q., He, M. X., Wu, B. and Feng, H. 2015. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis. Appl. Microbiol. Biotechnol. 99, 2009.   DOI
8 Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. and Picataggio, S. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240-243.   DOI
9 Zhang, X., Wang, T., Zhou, W., Jia, X. and Wang, H. 2013. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb. Cell Fact. 12, 41-41.   DOI
10 Zhao, N., Bai, Y., Liu, C. G., Zhao, X. Q., Xu, J. F. and Bai, F. W. 2014. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol. J. 9, 362-371.   DOI
11 Kim, I. S., Barrow, K. D. and Rogers, P. L. 2000. Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). Appl. Biochem. Biotechnol. 84-86, 357-370.   DOI
12 Jeon, Y. J., Xun, Z., Su, P. and Rogers, P. L. 2012. Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 93, 2513-2518.   DOI
13 Joachimsthal, E., Haggett, K. D., Jang, J. H. and Rogers, P. L. 1998. A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol. Lett. 20.
14 Kremer, T. A., LaSarre, B., Posto, A. L. and McKinlay, J. B. 2015. $N_{2}$ gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc. Natl. Acad. Sci. USA. 112, 2222-2226.   DOI
15 Kouvelis, V. N., Davenport, K. W., Brettin, T. S., Bruce, D., Detter, C. and Han, C. S., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. pomaceae lectotype strain ATCC 29192. J. Bacteriol. 193, 5049-5050.   DOI
16 Lee, J. H., Skotnicki, M. L. and Rogers, P. L. 1982. Kinetic studies on a flocculent strain of Zymomonas mobilis. Biotechnol. Lett. 4, 615-620.   DOI
17 Zhao, N., Bai, Y., Zhao, X. Q., Yang, Z. Y. and Bai, F. W. 2012. Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822). J. Bacteriol. 194, 7008-7009.   DOI
18 Zhao, N., Pan, Y., Liu, H. and Cheng, Z. 2016. Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823). Genome Announc. 4, e00193-16.
19 Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D., Detter, C. and Han, C., et al. 2009. Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163. J. Bacteriol. 191, 7140-7141.   DOI
20 Kouvelis, V. N., Teshima, H., Bruce, D., Detter, C., Tapia, R. and Han, C., et al. 2014. Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol roducer. Genome Announc. 2, e00845-13.
21 Liu, C., Dong, H., Zhong, J., Ryu, D. D. and Bao, J. 2010. Sorbitol production using recombinant Zymomonas mobilis strain. J. Biotechnol. 148, 105-112.   DOI
22 Liu, Y. F., Hsieh, C. W., Chang, Y. S. and Wung, B. S. 2017. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol. 17, 63.   DOI
23 Loos, H., Kramer, R., Sahm, H. and Sprenger, G. A. 1994. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J. Bacteriol. 176, 7688-7693.   DOI
24 Matsushita, K., Azuma, Y., Kosaka, T., Yakushi, T., Hoshida, H. and Akada, R., et al. 2016. Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Biosci. Biotechnol. Biochem. 80, 655-668.   DOI
25 Mohagheghi, A., Dowe, N., Schell, D., Chou, Y. C., Eddy, C. and Zhang, M. 2004. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol. Lett. 26, 321-325.   DOI
26 Rogers, P. L., Lee, K. J. and Tribe, D. E. 1979. Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol. Lett. 1, 165-170.   DOI
27 Moreau, R. A., Powell, M. J., Fett, W. F. and Whitaker, B. D. 1997. News & notes: the effect of ethanol and oxygen on the growth of Zymomonas mobilis and the levels of hopanoids and other membrane lipids. Curr. Microbiol. 35, 124-128.   DOI
28 Pappas, K, M., Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D. and Detter, C., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype strain ATCC 10988. J. Bacteriol. 193, 5051-5052.   DOI
29 Rogers, P. L., Jeon, Y. J., Lee, K. J. and Lawford, H. G. 2007. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108, 263-288.
30 Seo, J. S., Chong, H., Park, H. S., Yoon, K. O., Jung, C. and Kim, J. J., et al. 2005. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23, 63-68.   DOI
31 Shigeri, Y., Nishino, T., Yumoto, N. and Tokushige, M. 1991. Hopanoid biosynthesis of Zymomonas mobilis. Agric. Biol. Chem. 55, 589-591.   DOI
32 Sootsuwan, K., Thanonkeo, P., Keeratirakha, N., Thanonkeo, S., Jaisil, P. and Yamada, M. 2013. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol. Biofuels. 6, 180.   DOI
33 Tan, F., Wu, B., Dai, L., Qin, H., Shui, Z. and Wang, J., et al. 2016. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb. Cell Fact. 15, 4.   DOI
34 Charoensuk, K., Sakurada, T., Tokiyama, A., Murata, M., Kosaka, T. and Thanonkeo, P., et al. 2017. Thermotolerant genes essential for survival at a critical high temperature in thermotolerant ethanologenic Zymomonas mobilis TISTR 548. Biotechnol. Biofuels. 10, 204.   DOI
35 Tan, F. R., Dai, L. C., Wu, B., Qin, H., Shui, Z. X. and Wang, J. L., et al. 2015. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl. Microbiol. Biotechnol. 99, 5363-5371.   DOI
36 Agrawal, M. and Chen, R. R. 2011. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol. Lett. 33, 2127-2133.   DOI
37 Alvin, A., Kim, J., Jeong, G. T., Tsang, Y. F., Kwon, E. E. and Neilan, B. A., et al. 2017. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Appl. Microbiol. Biotechnol. 101, 5089-5099.   DOI
38 Barrow, K. D., Collins, J .G., Leight, D. A., Rogers, P. L. and Warr, R. G. 1984. Sorbitol production by Zymomonas mobilis. Appl. Microbiol. Biotechnol. 20, 225-232.   DOI
39 Chacon-Vargas, K., Chirino, A. A., Davis, M. M., Debler, S. A., Haimer, W. R. and Wilbur, J. J., et al. 2017. Genome Sequence of Zymomonas mobilis subsp. mobilis NRRL B-1960. Genome Announc. 5, e00562-17.
40 Cho, S. H., Lei, R., Henninger, T. D. and Contreras, L. M. 2014. Discovery of ethanol-responsive small RNAs in Zymomonas mobilis. Appl. Environ. Microbiol. 80, 4189-4198.   DOI
41 Wang, X., Gao, Q. and Bao, J. 2017. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnol. Biofuels. 10, 24.   DOI
42 Van Uden, N. and da Cruz Duarte, H. 1981. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae. J. Basic Microbiol. 21, 743-750.
43 Wang, H., Cao, S., Wang, W. T., Wang, K. T. and Jia, X. 2016. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. J. Ind. Microbiol. Biotechnol. 43, 861-871.   DOI
44 Wang, J. L., Wu, B., Qin, H., You, Y., Liu, S. and Shui, Z. X., et al. 2016. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microb. Cell Fact. 15, 101.   DOI
45 Wilke, D. 1999. Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl. Microbiol. Biotechnol. 52, 135-145.   DOI
46 Xia, J., Liu, C. G., Zhao, X. Q., Xiao, Y., Xia, X. X. and Bai, F. W. 2018. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol. Bioengin. 115, 2714-2525   DOI
47 Yang, S., Franden, M. A., Brown, S. D., Chou, Y. C., Pienkos, P. T. and Zhang, M. 2014. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol. Biofuels. 7, 140.   DOI
48 De Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B., Schmitz, G. and Wiechert, W., et al. 1999. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by $^{13}C$- and $^{31}P$-NMR spectroscopy. Arch. Microbiol. 171, 371-385.   DOI
49 Deanda, K., Zhang, M., Eddy, C. and Picataggio, S. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62, 4465-4470.   DOI
50 Yang, S., Fei, Q., Zhang, Y., Contreras, L. M., Utturkar, S. M. and Brown, S. D., et al. 2016. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial. Biotechnol. 9, 699-717.   DOI
51 Franden, M. A., Pienkos, P. T. and Zhang, M. 2009. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267.   DOI
52 Desiniotis, A., Kouvelis, V. N., Davenport, K., Bruce, D., Detter, C. and Tapia, R., et al. 2012. Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J. Bacteriol. 194, 5966-5967.   DOI
53 Dunn, K. L. and Rao, C. V. 2014. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 98, 6897-6905.   DOI
54 Feldmann, S. D., Sahm, H. and Sprenger, G. A. 1992. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl. Microbiol. Biotechnol. 38, 354-361.   DOI
55 Franden, M. A., Pilath, H. M., Mohagheghi, A., Pienkos, P. T. and Zhang, M. 2013. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol. Biofuels. 6, 99.   DOI
56 Yang, S., Pan, C., Tschaplinski, T. J., Hurst, G. B., Engle, N. L. and Zhou, W., et al. 2013. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One 7, e68886.
57 Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A, Lu, T. Y. and Martin, S. L., et al. 2010. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 107, 10395-10400.   DOI
58 Yang, S., Mohagheghi, A., Franden, M. A., Chou, Y. C., Chen, X. and Dowe, N., et al. 2016. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol. Biofuels. 9, 189.   DOI
59 Yang, S., Pan, C., Hurst, G. B., Dice, L., Davison, B. H. and Brown, S. D. 2014. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics. Front. Microbiol. 5, 246.   DOI
60 Yang, S., Pappas, K. M., Hauser, L. J., Land, M. L., Chen, G. L. and Hurst, G. B., et al. 2009. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 27, 893-894.   DOI
61 Yi, X., Gu, H., Gao, Q., Liu, Z. L. and Bao, J. 2015. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol. Biofuels. 8, 153.   DOI
62 Gu, H., Zhang, J. and Bao, J. 2015. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnol. Bioengin. 112, 1770-1782.   DOI
63 Haft, R. J., Keating, D. H., Schwaegler, T., Schwalbach, M. S., Vinokur, J. and Tremaine, M., et al. 2014. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc. Natl. Acad. Sci. USA. 111, E2576-2585.   DOI
64 He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R., et al. 2012. Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol. Biofuels. 5, 75.   DOI
65 Yang, S., Pelletier, D. A., Lu, T. Y. and Brown, S. D. 2010. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 10, 135.   DOI
66 Yang, S., Vera, J. M., Grass, J., Savvakis, G., Moskvin, O. V. and Yang, Y., et al. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol. Biofuels. 11, 125.   DOI