• 제목/요약/키워드: strain boundary

검색결과 645건 처리시간 0.027초

경계요소법을 이용한 평면변형율요소의 확률해석 (Probability Analysis of Plane Strain Element using Boundary Element Method)

  • 전정배;윤성수;박진선;이형렬
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.

High Temperature Creep Behavior in Al-Mg(Zn)-Fe Alloys

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제20권1호
    • /
    • pp.37-41
    • /
    • 2010
  • Creep tests were conducted under a condition of constant stress on two aluminum-based alloys containing particles: Al-5% Mg-0.25% Fe and Al-5% Zn-0.22% Fe. The role of grain boundary sliding was examined in the plane of the surface using a square grid printed on the surface by carbon deposition and perpendicular to the surface using two-beam interferometry. Estimates of the contribution of grain boundary sliding to the total strain, $\varepsilon_{gbs}/\varepsilon_t$ reveal two trends; (i) the sliding contribution is consistently higher in the Al-Mg-Fe alloy, and (ii) the sliding contribution is essentially independent of strain in the Al-Mg-Fe alloy, but it shows a significant decrease with increasing strain in the Al-Zn-Fe alloy. Sliding is inhibited by the presence of particles and its contributions to the total strain are low. This inhibition is attributed to the interaction between the grain boundary dislocations responsible for sliding and particles in the boundaries.

The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQM

  • Ghasemi, Ahmad Reza;Mohandes, Masood
    • Advances in aircraft and spacecraft science
    • /
    • 제3권4호
    • /
    • pp.379-397
    • /
    • 2016
  • In this manuscript, free vibrations of a unidirectional composite orthotropic Timoshenko beam based on finite strain have been studied. Using Green-Lagrange strain tensor and comprising all of the nonlinear terms of the tensor and also applying Hamilton's principle, equations of motion and boundary conditions of the beam are obtained. Using separation method in single-harmonic state, time and locative variables are separated from each other and finally, the equations of motion and boundary conditions are gained according to locative variable. To solve the equations, generalized differential quadrature method (GDQM) is applied and then, deflection and cross-section rotation of the beam in linear and nonlinear states are drawn and compared with each other. Also, frequencies of carbon/epoxy and glass/epoxy composite beams for different boundary conditions on the basis of the finite strain are calculated. The calculated frequencies of the nonlinear free vibration of the beam utilizing finite strain assumption for various geometries have been compared to von Karman one.

나노구조재료의 소성변형 성질의 변형률속도 의존성 (Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials)

  • 윤승채;김형섭
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

2相接合材의 接合境界面 局所領域에서의 3次元 變形率分布 (3-dimensional strain distribution in a local area of jointed boundary of composite materials)

  • 박정도;도전평팔;최선호
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1207-1216
    • /
    • 1988
  • 본 연구에서는 이 염색격자법을 이용하여 가장 기본적인 복합재인 탄성계수가 서로 다른 두 물체로 구성된 2상적합재를 제작할 수 있는가를 검토하였고, 또한 제작 완성된 접합재를 이용하여 접합경계면 부근의 국소영역에서의 3차원적인 변형거동을 관찰한 것이다.

조석현상이 방조제 경계면의 응력-변형 거동에 미치는 영향 분석 (The Analysis of Tidal Effect on Stress-Strain Behavior in the Boundary Surface of Sea Dike Embankment)

  • 임성훈
    • 한국농공학회논문집
    • /
    • 제55권2호
    • /
    • pp.1-8
    • /
    • 2013
  • This study was performed for the purpose of analyzing the effect of tide on the stress-strain behavior in the boundary surface of sea dike embankment. Tide is a dynamic condition, but there are not suitable numerical models to solve the dynamic embankment condition caused by tide. So the analysis was simplified to quasi dynamic as follow. First, seepage by tide was analyzed according to elapsed time, and the results of the analysis at every hour during one periodic cycle time of 12 hours were applied to the pore water pressure conditions of stress-strain analysis with hyperbolic model by Duncan and Chang. The place at which maximum shear strain took place in the analysis result moved up and down repeatedly along the boundary of the dredged sand fill section and the crashed stone filter section. The value of maximum shear strain was large at high water level of tide. This result means that contraction and relaxation occur in turn repeatedly at every specific position along the boundary, and the repeated action compact loose position with sand moved down from the upper position by gravity. The experiment with the small sea dike model showed the result consistent with the numerical analysis. The surface of sea side on the dike collapsed at high water level after a couple of repetition of the rising and falling of water.

나노재료 입계상의 소성변형에 대한 입계확산크립 모델 (A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials)

  • 김형섭;오승탁;이재성
    • 소성∙가공
    • /
    • 제10권5호
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF

재료손상과 입계 미끄럼을 고려한 증기배관의 크리프 파단수명 및 변형률 예측 (Prediction of Creep Rupture Time and Strain of Steam Pipe Accounting for Material Damage and Grain Boundary Sliding)

  • 홍성호
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1182-1189
    • /
    • 1995
  • Several methods have been developed to predict the creep rupture time of the steam pipes in thermal power plant. However, existing creep life prediction methods give very conservative value at operating stress of power plant and creep rupture strain cannot be well estimated. Therefore, in this study, creep rupture time and strain prediction method accounting for material damage and grain boundary sliding is newly proposed and compared with the existing experimental data. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The results showed good correlation between the theoretically predicted creep rupture time and the experimental data. And creep rupture strain may be well estimated by using the proposed method.

기존 파일기초에 근접한 터널굴착으로 인한 전단변형률 형성에서의 경계선 (A boundary line between shear strain formations associated with tunnelling adjacent to an existing piled foundation)

  • 이용주
    • 한국터널지하공간학회 논문집
    • /
    • 제10권3호
    • /
    • pp.283-293
    • /
    • 2008
  • 현재까지 기존 파일에 근접하여 터널을 굴착할 경우 발생하는 상호적인 지반거동에 대한 연구는 대부분의 지반공학자에게 잘 인식이 되지 않아 왔다. 왜냐하면 이것은 매우 복잡한 경계조건의 문제이기 때문이다. 따라서 본 연구에서는 이러한 복잡한 지반거동과 관련한 전단변형률 형성을 파악하기 위해 실내모형실험과 더불어 수치해석을 수행하였다. 실험 및 수치해석 결과, 선단지지파일의 선단부 위치에 따른 두 개의 뚜렷한 전단변형률 형성을 구분하는 경계선을 제안하였다. 이러한 경계선은 도심지에서 파일로 지지되는 빌딩의 손상을 방지하기 위해 적절한 터널의 위치를 계획하는데 있어 도움이 될 것이라고 판단한다.

  • PDF

균열이 있는 선형 점탄성체의 변형에너지 방출률 G(t)에 대한 경계요소 해석 (Boundary Element Analysis of Strain Energy Release Rate G(t) for Cracked Viscoelastic Solids)

  • 박명규;이상순;서창민
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2072-2078
    • /
    • 2003
  • In this paper, the boundary element analysis of viscoelastic strain energy release rate G(t) for the cracked linear viscoelastic solids has been attempted. This study proposes the G(t) equation and the calculating method of G(t) by time-domain boundary element analysis for the viscoelastic solids. The G(t) is defined as the derivative of the viscoelastic potential energy II(t) with respect to crack length a. Two example problems are presented to show the applicability of the proposed method to the analysis of the cracked linear viscoelastic solids. Numerical results of example problems show the accuracy and effectiveness of the proposed method.