• Title/Summary/Keyword: strain aging

Search Result 249, Processing Time 0.021 seconds

Effects of annealing temperature on strain-induced martensite and mechanical properties of 304 stainless steel (304 스테인리스 강의 가공유기 마르텐사이트와 기계적 거동에 미치는 온도의 영향)

  • Lee, S.H.;Choi, C.Y.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.203-206
    • /
    • 2008
  • Transformation of austenite to martensite during cold rolling has been widely used to strengthen metastable austenitic stainless steel grades. Aging treatment of cold worked metastable austenitic stainless steels, including ${\alpha}'$-martensite phase, results in the further increase of strength, when aging is performed in $200^{\circ}C$ to $450^{\circ}C$ temperature range. The purpose of the present study was to evaluate the effect of time and temperature on the stress-strain behavior of cold worked austenitic stainless steels. The amount of ${\alpha}'$-martensite during cold working and aging was examined by ferrite scope and X-ray diffraction (XRD). During aging at $450^{\circ}C$ for 1hr, tensile strength dramatically increased by 150MPa. Deformed metastable austenitic steels containing the "body-centered" ${\alpha}'$-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature.

  • PDF

Modeling on the Nonlinear Rate Sensitivity of Flow Stress (유동응력의 비선형 속도 민감도에 대한 모델링)

  • Ho, Kwang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.670-676
    • /
    • 2004
  • Most metallic materials and alloys show rate independence or negative rate sensitivity in some temperature region when dynamic strain aging occurs. It is generally recognized that negative rate sensitivity is an essential feature of dynamic strain aging that can depend on strain and/or strain rate. The unified viscoplasticity theory based on overstress is applied to reproduce a change of rate sensitivity type that depends on strain or strain rate. This is accomplished through the introduction of a single new term in the growth law of the equilibrium stress, which is a tensor valued state variable of the model. It is also shown that the new term can be used to reproduce a dramatic increase of rate sensitivity in dynamic plasticity.

Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels (API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향)

  • Lee, Seung-Wan;Im, In-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.

Effects of Dislocation Distribution and Carbon Effective Diffusion on Strain Aging Behavior of a Low Carbon Dual Phase Steel (저탄소 Dual Phase강의 가공시효에 미치는 탄소유효확산 및 전위분포의 영향)

  • Yoo, S.H.;Jung, K.C.;Hong, K.H.;Park, KT.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.226-235
    • /
    • 2021
  • The strain aging behavior of a low carbon dual phase steel was examined in two conditions: representing room temperature strain aging (100 ℃ × 1 hr after 7.5 % prestrain) and bake hardening process (170 ℃ × 20 min after 2 % prestrain), basing on carbon effective diffusion and dislocation distribution. The first principle calculations revealed that (Mn or Cr)-vacancy-C complexes exhibit the strongest attractive interaction compared to other complexes, therefore, act as strong trapping sites for carbon. For room temperature strain aging condition, the carbon effective diffusion distance is smaller than the dislocation distance in the high dislocation density region near ferrite/martensite interfaces as well as ferrite interior considering the carbon trapping effect of the (Mn or Cr)-vacancy-C complexes, implying ineffective Cottrell atmosphere formation. Under bake hardening condition, the carbon effective diffusion distance is larger compared to the dislocation distance in both regions. Therefore, formation of the Cottrell atmosphere is relatively easy resulting in to a relatively large increase in yield strength under bake hardening condition.

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

Strengthening mechanisms of 304 stainless steel during strain aging (304 스테인리스강 시효처리 시 강화기구 고찰)

  • Lee, S.H.;Choi, C.Y.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.382-384
    • /
    • 2009
  • Strengthening mechanisms of metastable austenitic stainless steel, containing $\alpha'$-martensite phase, during strain aging was investigated. The variations of volume fraction of $\alpha'$-martensite phase, hardness of $\alpha'$-martensite phase, hardness of austenite were examined.

  • PDF

Effects of Maximum Strain and Aging Conditions on the Fatigue Life of Vulcanized Natural Rubber (가황 천연고무의 피로수명에 미치는 최대 변형률과 노화도 영향)

  • 우창수;김완두;김완수;권재도
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-190
    • /
    • 2004
  • The interest of the fatigue life of rubber components such as engine mounts is increasing according to the extension of warranty period of the automotive components. Automotive engine mounts get damaged due to thermal and mechanical loadings. This paper discusses a fatigue life prediction of the 3-dimensional dumbbell specimens for natural rubber compound considering the effects of maximum strain and heat aging temperature. Displacement controlled fatigue life tests were performed using specimens with different levels of maximum strain and various hardness. The basic mechanical properties test and the fatigue test of aged rubber specimen under normal and elevated temperature were executed. A procedure to predicted the fatigue life of vulcanized natural rubber material based on the maximum strain method was proposed, and then this curve was in good agreement with fatigue test data less than 200% error range.

Changes in Hardness and Damping Capacity of Aged Mg-5%Sn Alloy (시효한 Mg-5%Sn 합금의 경도와 진동감쇠능 변화)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.255-261
    • /
    • 2022
  • In this work, the strain-amplitude independent and strain-amplitude dependent damping capacities of Mg-5%Sn alloy have been investigated as a function of its age-hardening response. The hardness increased with an increase in aging time, reached a peak value after 48 h, and then it gradually decreased. The damping capacities of the Mg-5%Sn alloy exhibited a decreasing tendency in the order of solution-treated, under-aged, peakaged, and over-aged states in the strain-amplitude dependent region, whereas they increased continuously with aging time in the strain-amplitude independent region. The microstructural examination during aging revealed that the lower concentration of Sn solutes in the α-(Mg) matrix and the lower density of the Mg2Sn precipitate particles may well be the crucial factors for better damping values in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Influence of dynamic strain aging on material strength behavior of virgin and service-exposed Gr.91 Steel (신재 및 가동이력 Gr.91강의 재료강도 거동에 미치는 동적변형시효의 영향)

  • Ki-Ean Nam;Hyeong-Yeon Lee;Jae-Hyuk Eoh;Hyungmo Kim;Hyun-Uk Hong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study investigates the effects of temperatures and strain rates on the strength and ductility of Gr.91 (ASME Grade 91) steel which is widely being used as a heat-resistant material in Generation IV nuclear and super critical thermal power plants. The tensile behavior of modified 9Cr-1Mo (Gr.91) steel was studied for the three strain rates of 6.67×10-5/s, 6.67×10-4/s and 6.67×10-3/s over the temperature range from room temperature (RT) to 650℃. Experimental results showed that at specific combinations of temperatures (300~400℃) and strain rates, serrations appeared in the stress-strain curves. Concurrently, abnormal behaviors such as a plateau in yield strength and tensile strength, a minimum in ductility and negative strain rate sensitivity were observed. These phenomena were analyzed as significant characteristics of dynamic strain aging (DSA). Since this abnormal behavior in Gr.91 steel affects the material strength, it is judged that a correlation analysis between DSA and material strength should be crucial in the design and integrity evaluation of Gr. 91 steel pressure vessel and piping subjected to high-temperature loading.

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.