• Title/Summary/Keyword: straight-cone

Search Result 27, Processing Time 0.036 seconds

A study on the average wind load characteristics and wind-induced responses of a super-large straight-cone steel cooling tower

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Zhao, L.;Tamura, Y.
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.433-457
    • /
    • 2017
  • As a novel typical wind-sensitive structure, the wind load and wind-induced structural behaviors of super-large straight-cone cooling towers are in an urgent need to be addressed and studied. A super large straight-cone steel cooling tower (189 m high, the highest in Asia) that is under construction in Shanxi Power Plant in China was taken as an example, for which four finite element models corresponding to four structural types: the main drum; main drum + stiffening rings; main drum + stiffening rings + auxiliary rings (auxiliary rings are hinged with the main drum and the ground respectively); and main drum + stiffening rings + auxiliary rings (auxiliary rings are fixed onto the main drum and the ground respectively), were established to compare and analyze the dynamic properties and force transferring paths of different models. After that, CFD method was used to conduct numerical simulation of flow field and mean wind load around the cooling tower. Through field measurements and wind tunnel tests at home and abroad, the reliability of using CFD method for numerical simulation was confirmed. On the basis of this, the surface flow and trail characteristics of the tower at different heights were derived and the wind pressure distribution curves for the internal and external surfaces at different heights of the tower were studied. Finally, based on the calculation results of wind-induced responses of the four models, the effects of stiffening rings, auxiliary rings, and different connecting modes on the dynamic properties and wind-induced responses of the tower structure were derived and analyzed; meanwhile, the effect mechanism of internal suction on such kind of cooling tower was discussed. The study results could provide references to the structure selection and wind resistance design of such type of steel cooling towers.

Analysis of Dose Distribution of IORT Cone (IORT CONE의 선량분포에 관한 연구)

  • 김명세;김성규;신세원
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.141-148
    • /
    • 1991
  • A since authors started IORT for stomach cancer patient on 198, we developed various sized, shaped IORT cones for better clinical application and homogeneous surface and depth dose distribution. Authors concluded as following. 1. The shaping block should be fixed on the tray, not under the tray for homogeneous dose distribution. 2. The straight cone was showed better dose distribution than divergence cone. 3. The acryl cone was superior than the stainless-steel cone. 4. The acryl cover fixed on the end for IORT cone not only improvement of surface dose, but also homogenity of depth dose.

  • PDF

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

JORDAN ALGEBRAS ASSOCIATED TO T-ALGEBARS

  • Jang, Young-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.179-189
    • /
    • 1995
  • Let $V \subset R^n$ be a convex homogeneous cone which does not contain straight lines, so that the automorphism group $$ G = Aut(R^n, V)^\circ = { g \in GL(R^n) $\mid$ gV = V}^\circ $$ ($\circ$ denoting the identity component) acts transitively on V. A convex cone V is called "self-dual" if V coincides with its dual $$ (1.1) V' = { x' \in R^n $\mid$ < x, x' > > 0 for all x \in \bar{V} - {0}} $$ where $\bar{V}$ denotes the closure of V.sure of V.

  • PDF

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Fabrication and Dosimetry Characteristics of Intracavitary Cones for Radiotherapy (방사선 강내치료를 위한 소조사면 전자선cone의 선량분포 특성)

  • 나수경;권수일
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.95-102
    • /
    • 2001
  • The intracavitary cones were designed which were made of stainless steel and have scratched inside cone to be generated electron scatter and designed to be attached easily to the LINAC collimator and controlled cones length to be contacted smoothly between the patient and the cone tip. Two types of intracavitary cones were designed. One is the straight end cones with circular opening on the distal end and the other is 30 degree beveled end cones with elliptical opening on the distal end. Each type of intracavitary cone ranged in daimeter from 2.5 cm to 3.5 cm and required a separate set of lower trimmer annulias cone diameter. The film phantom was designed with an internal cassette that accurately aligned the film edge with the film phantom surface. Film optical density data were measured by photodensitometer(Wellhofer 700i) Dosimetry measurements were made to commission the LINAC for 6 - 20 MeV electron using the intracavitary cones. Isodose curves were measured for all energy and cones combinations. Output is defined as the maximum dose per MU along the clinical central axis in water at 113 cm SSD. Calibration output, defined to be the output for the 15cm$\times$15cm diameter straight cone, was adjusted to 1.00 cGy/MU at each energy according to the TG-21 protocol.

  • PDF

Stereographic Analysis to Predict Rock Sliding Failure of Curved Slope (굴곡 사면의 암반 활동 파괴 예측을 위한 평사 투영 해석)

  • 윤운상;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.457-464
    • /
    • 2000
  • Stereographic method is a general and basic method to analyse sliding failure potential of rock slope. Region of failure analysis using stereographic method extend to curved slope from straight slope in this paper, Curved slope is defined as the multi-face slope with free surface more than two face and has different characteristics from straight single face slope. Individual daylight envelopes of free surfaces are combined into total daylight envelope of multi-face slope. So, sliding envelope of multi-face slope is the daylight envelope except friction cone. Specially, If only single joint set is developed in the slope, single plane sliding(or plane failure) is impossible in the single-face straight slope, but possible in the multi-face slope. In the multi-face slope with only one joint set, single plane sliding occurs when orientation of sliding plane is between two side slope orientation in the sliding envelope.

  • PDF

Atomization Effect of Supersonic Liquid Jet by a Nozzle L/d of Subscale High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 L/d에 따른 초음속 액체 제트의 미립화 특성)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.196-199
    • /
    • 2011
  • Subscale high-pressure injection system which use two-stage light gas gun composed with high-pressure tube, pump tube and launch tube can make supersonic liquid jet. The supersonic liquid jet enhances droplet atomization by shockwave in front of the jet. In this study, the experiments was executed to identify the atomization characteristics of the supersonic liquid jet using straight cone nozzle. SMD which presents the atomization characteristics was decreased from $151.2{\mu}m$ to $52.25{\mu}m$ by increasing of L/d.

  • PDF

The dosimetric Properties of Electron Beam Using Lyon Intraoperative Device for Intraoperative Radiation Therapy (LID (Lyon Intraoperative Device) 이용한 수술중 방사선치료시 전자선의 선량분포 특성)

  • Kim Kye Jun;Park Kyung Ran;Lee Jong Young;Kim Hie Yeon;Sung Ki Jocn;Chu Sung Sil
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.85-93
    • /
    • 1992
  • We have studied the dosimetric properties of electron beam using Lyon intraoperative device for intraoperative radiation therapy. The dosimetry data had compiled in such a way that a quick and correct decision regarding the cone shape, energy, and accurate calculations could be made. Using 3 dimensional water phantom, we have got the following data: cone output ratios, surface dose, $d_{max}$, $d_{90}$, flatness, symmetry, beam profiles, isodose curve, and SSD correction factors. The cone output ratios were measured with straight and bevelled cone, respectively. As the cone size and the energy were reduced, the cone output ratios decreased rapidly. With the flattening filter, the surface dose increased by electron beam to $85.3\%$, $89.2\%$, and $93.4\%$, for 6 MeV, 9 MeV, and 12 MeV, respectively. It is important to increase the surface dose to $90\%$ or more. Inspite of diminishing dose rate and beam penetration, this flattening filter increases the treatment volume significantly. With the combination of the three levels collimation and the flattening filter, we achieved good homogeneity of the beam and better flatness and the diameter of the 90$\%$ isodose curve was increased. It is important to increase the area that is included in the $90\%$ isodose level. The value of measured and calculated SSD correction factors did not agree over the clinically important range from 100 cm to 110 cm.

  • PDF

A case report of odontogenic myxoma with characteristic multilocular lesion (특징적인 다방성 소견을 보이는 치성 점액종의 증례보고)

  • Lee, Byung-Do;Lee, Wan;Paeng, Jun-Young;Son, Hyun-Jin
    • Imaging Science in Dentistry
    • /
    • v.39 no.1
    • /
    • pp.51-54
    • /
    • 2009
  • Although odontogenic myxoma (OM) has various radiographic appearances, the characteristic features of OM are the multilocular radiolucent lesion, straight bony septa along the margin forming either square or triangular spaces. We present a case of OM in a 25-year old-male patient. Multilocular radiolucent lesion on the left mandible body showed tennis racket appearance. Cone beam computed tomography (CBCT) showed straight bony septa along the margin and cortical perforation. This CBCT features would have significantly contributed to allowing a diagnosis of OM. We think that this case shows characteristic radiographic features of odontogenic myxoma.

  • PDF