• Title/Summary/Keyword: story model

Search Result 803, Processing Time 0.026 seconds

Study of Re-writing "A Tale of the Conquest over a Big Enemy from an Underground Nation" - Focusing on picture book narrative (지하국대적퇴치설화를 활용한 새로쓰기 연구 - 그림책 서사를 중심으로)

  • Kim, Hwa-Lim;Kim, Hanil
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.88-93
    • /
    • 2017
  • The story of "A Tale of the Conquest over a Big Enemy from an Underground Nation" is a story that is distributed all over the world. This familiar narrative structure can be accepted without great objection even in places with different cultures. In case of storytelling with the elements extracted from the narrative according to the previous research, storytelling of the picture book was carried out using the element and structure of the narrative. One of the ways to content the story is called a re-writing. In this paper, we divided the components of picture book into literary subjects, plots, characters, and backgrounds. "A Tale of the Conquest over a Big Enemy from an Underground Nation" is analyzed in the same way. And presented storytelling of the picture book.

Seismic Performance of High-Rise Intermediate Steel Moment Frames according to Rotation Capacities of Moment Connections

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • The rotation capacity of the moment connections could significantly influence on the seismic performance of steel moment resisting frames. Current seismic provisions require that beam-to-column connections in Intermediate Moment Frames (IMF) should have a drift capacity as large as 0.02 radian. The objective of this study was to evaluate the effect of the rotation capacity of moment connections on the seismic performance of high-rise IMFs. For this purpose, thirty- and forty-story high-rise IMFs were designed according to the current seismic design provisions. The seismic performance of designed model frames was evaluated according to FEMA P695. This study showed that the forty-story IMF satisfied the seismic performance objective specified in FEMA P695 when the rotation capacity of the connections was larger than 0.02. However, thirty-story IMFs satisfied the performance objective when the connection rotation capacity is larger than 0.03.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

Seismic Response of Structures with Buckling-Restrained Braces (좌굴방지 가새가 설치된 건물의 지진응답)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.197-207
    • /
    • 2002
  • Energy dissipation capacity and earthquake responses of steel structures installed with unbonded braces(UB) were investigated. Parametric studies were performed for a single-degree-of-freedom structure under harmonic loads, and optimum yield strength of unbonded braces were derived. Nonlinear dynamic time history analyses were carried out to investigate the seismic response of multi-story model structures with UB having various size and strength. Various techniques were applied to determine proper story-wise distribution of UB in multi-story structures. The analysis results show that the maximum displacements of structures generally decrease as the stiffness of UB increases. However for some natural frequencies and seismic loads the maximum displacement and accumulated damage increases as the stiffness of UB increases.

Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings

  • Chun, Young-Soo;Hur, Moo-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.439-451
    • /
    • 2015
  • This study analyzed the isolation effect for a 15-story reinforced concrete (RC) building with regard to changes in the beam-column stiffness ratio and the difference in the vibration period between the superstructure and an isolation layer in order to provide basic data that are needed to devise a framework for the design of isolated RC buildings. First, this analytical study proposes to design RC building frames by securing an isolation period that is at least 2.5 times longer than the natural vibration period of a superstructure and configuring a target isolation period that is 3.0 s or longer. To verify the proposed plan, shaking table tests were conducted on a scaled-down model of 15-story RC building installed with laminated rubber bearings. The experimental results indicate that the tested isolated structure, which complied with the proposed conditions, exhibited an almost constant response distribution, verifying that the behavior of the structure improved in terms of usability. The RC building's response to inter-story drift (which causes structural damage) was reduced by about one-third that of a non-isolated structure, thereby confirming that the safety of such a superstructure can be achieved through the building's improved seismic performance.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Effects of the earth fissure on the seismic response characteristics of a nearby metro station

  • Jiang Chang;Yahong Deng;Huandong Mu
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2023
  • Earth fissures with several kilometers will inevitably approach or cross the metro line, significantly threatening the safety of the underground structure in the earth fissure site. However, the influence of the earth fissure site's amplification effect on the metro station's dynamic response is still unclear. A representative earth fissure in Xi'an was taken as an example to establish a numerical model of a metro station in the earth fissure site. The dynamic response characteristics of the metro stations at different distances from the earth fissure under various seismic waves were calculated. The results show that the existence of the earth fissure significantly amplifies the dynamic response of the nearby underground structures. The responses of the axial force, shear force, bending moment, normal stress, horizontal displacement, inter-story drift, and relative slip of the metro station were all amplified within a specific influence range. The amplification effect increases with the seismic wave intensity. The amplification effect caused by the earth fissure has relatively weak impacts on the axial shear, shear force, bending movement, normal stress, and horizontal movement; slightly larger impacts on the inter-story drift and acceleration; and a significant impact on the relative slip. The influence ranges of the axial force and normal stress are approximately 20 m. The influence ranges of the acceleration and inter-story drift can reach 30 m. Therefore, the seismic fortification level of the underground structure in the earth fissure site needs to be improved.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part I: Modeling and experiments

  • Huang, Y.L.;Chen, H.J.;Rosowsky, D.V.;Kao, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.53-66
    • /
    • 2000
  • This paper proposes a simple numerical model for use in a finite analysis (FEA) of scaffold-shoring systems. The structural model consists of a single set of multiple-story scaffolds with constraints in the out-of-plane direction at every connection joint between stories. Although this model has only two dimensions (termed the 2-D model), it is derived from the analysis of a complete scaffold-shoring system and represents the structural behavior of a complete three-dimensional system. Experimental testing of scaffolds up to three stories in height conducted in the laboratory, along with an outdoor test of a five-story scaffold system, were used to validate the 2-D model. Both failure modes and critical loads were compared. In the comparison of failure modes, the computational results agree very well with the test results. However, in the comparison of critical loads, computational results were consistently somewhat greater than test results. The decreasing trends of critical loads with number of stories in both the test and simulation results were similar. After investigations to explain the differences between the computationally and experimentally determined critical loads, it was recommended that the 2-D model be used as the numerical model in subsequent analysis. In addition, the computational critical loads were calibrated and revised in accordance with the experimental critical loads, and the revised critical loads were then used as load-carrying capacities for scaffold-shoring systems for any number of stories. Finally, a simple procedure is suggested for determining load-carrying capacities of scaffold-shoring systems of heights other than those considered in this study.

Non-Prismatic Beam Element for Beams with RBS Connection (RBS 연결부를 갖는 보에 대한 부등 단면 보 요소)

  • Kim, Kee Dong;Ko, Man Gi;Hwang, Byoung Kuk;Pae, Chang Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.833-846
    • /
    • 2004
  • This study presents a non-prismatic beam element for modeling the elastic behavior of steel beams, which have the post-Northridge connections in steel moment frames. The elastic stiffness matrix, including the shear effects for non-prismatic members with reduced beam section (RBS) connection, is in closed form. A simplified approach is also suggested, which uses a prismatic beam element to model beams with the RBS connection. This method can estimate quiteexactly the maximum story drift ratios of frames with the RBS connection. The effects of reduced beam section connection on the elastic stiffness of steel moment frames were investigated. The selection of a proper model to account for deformations at the joint might have a more important role in estimating the maximum story drift ratios of frames with better accuracy than the RBS cutouts.