• Title/Summary/Keyword: story drift angle

Search Result 36, Processing Time 0.025 seconds

Simplified Analytical Model for a Steel Frame with Double Angle Connections (더블앵글 접합부를 사용한 철골조의 단순해석 모델)

  • Yang, Jae-Guen;Lee, Gil-Young;Park, Jeong-Suk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.45-54
    • /
    • 2006
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of connection flexibility, support conditions, and beam-to-column stiffness ratio on the story drift of a frame. Based on the results of these studies, several design guides have been proposed. This research has been conducted to predict the actual behavior of a double angle connection, and to establish its effect on the story drift and the maximum allowable load of a steel frame. For these purposes, several experimental tests were conducted and a simplified analytical model was proposed. This simplified analytical model consists of four spring elements as well as a column member. In addition, a point bracing system was proposed to control the excessive story drift of an unbraced steel frame.

  • PDF

Story Drift of a Frame with Column Flange Bolted-Beam Web Welded Double Angle Connections (더블앵글로 접합된 골조의 수평처짐)

  • Yang, Jae-Guen;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.95-103
    • /
    • 2003
  • Frame is one of the most commonly used structural systems for the resistance of applied loads. Many researchers have recently conducted their studies to investigate the effect of several parameters such as the connection flexibility, boundary condition of each support, beam-to-column stiffness ratio. These parameters play important roles on the characteristic behavior of frames. A simplified spring model is proposed to obtain the story drifts of frames with various beam-to-column connection stiffnesses in this research. A point bracing system with adequate spring stiffness is also suggested to establish the relationship between the applied load and the resisting translational spring stiffness within the limit state of story drift.

  • PDF

Inclinometer-based method to monitor displacement of high-rise buildings

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2018
  • Horizontal displacement of high-rise building is an essential index for assessing the structural performance and safety. In this paper, a novel inclinometer-based method is proposed to address this issue and an algorithm based on three spline interpolation principle is presented to estimate the horizontal displacement of high-rise buildings. In this method, the whole structure is divided into different elements by different measured points. The story drift angle curve of each element is modeled as a three spline curve. The horizontal displacement can be estimated after integration of the story drift angle curve. A numerical example is designed to verify the proposed method and the result shows this method can effectively estimate the horizontal displacement with high accuracy. After that, this method is applied to a practical slender structure - Shanghai Tower. Nature frequencies identification and deformation monitoring are conducted from the signal of inclinometers. It is concluded that inclinometer-based technology can not only be used for spectrum analysis and modal identification, but also for monitoring deformation of the whole structure. This inclinometer-based technology provides a novel method for future structural health monitoring.

Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures (평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석)

  • Park, Hyo-Sun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Analysis of the Static Characteristics of High-Rise Structures With Twisted Shape (비틀어진 형상(Twisted)을 가지는 고층 구조물의 역학적 특성 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.93-100
    • /
    • 2020
  • In this study, structural characteristics were analyzed by combining gravity load and lateral loads such as seismic loads through static analysis of example structures, and the static characteristics of the twisted structure according to the plane rotation angle were also analyzed. Example structures were selected as regular structure, and twisted structures; 1.0, 2.0, and 3.0 degree angle of rotation per story, and static analysis was performed by the load combination case 1 and case 2. As a result the story drift ratio of the twisted-shaped structure also increased as the plane rotation angle per story increased. The eccentricity according to the load combination was the highest in the lower stories of all analysis models, and the eccentricity was found to be larger as the rotation angle decreased. The twisted-shaped structure was more responsible for the bending moment of the column than the regular structure, and the vertical member axial force of all analysis models was almost similar.

Estimation of Response Modification Factor and Nonlinear Displacement for Moment Resisting Reinforced Concrete Frames (철근콘크리트 연성 모멘트골조에 대한 반응수정계수와 비선형 변위량의 평가)

  • 김길환;전대한;이상호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 2002
  • The purpose of this study is to provide a fundamental data of earthquake resistant design through the estimation of the response modification factor and nonlinear displacement for moment resisting reinforced concrete frames by linear and nonlinear static analysis. The analysis models are designed in accordance with AIK code and then, estimated the response modification factor and nonlinear displacement of the buildings. The parameters such as story numbers(10, 20, 30), plan ratios(1:1, 1:2) and analysis types(2D, 3D) of building structure are chosen for use in this study. After comparing the results of linear and nonlinear static analysis, the response modification factor is obtained as the product of four factors: ductility factor, strength factor, damping factor and redundancy factor. The response modification factor are close to 3.5 in case of 2 span, 4.3 in case of 3 span and 5.0 in case 4 or more span models regardless number of stories and plan ratios. The nonlinear displacement is evaluated from the ratio of story drift angle(nonlinear drift/linear drift). The ratio of story drift angle increases as story numbers increase and the value varies from 5.85 to 9.34.

Point Bracing System for a Steel Frame with Double Angle Connections Under Horizontal and Vertical Loads (수평·수직하중을 동시에 받는 더블앵글로 접합된 철골조의 절점 보강시스템)

  • Yang, Jae Guen;Kim, Ho Keun;Kim, Ki Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.629-639
    • /
    • 2004
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of several parameters, such as connection flexibility, the boundary condition of each support, and beam-to-column stiffness ratio, on the characteristic behavior of a frame. Based on the results of these studies, several design methods have been proposed. This research focused on the number of bolts on the rotational stiffness of a double-angle connection, and its effect on the story drift of a frame. To achieve these purposes, a simplified analytical model was proposed. Several experimental tests were also conducted to obtain the rotational connection stiffness of each double-angle connection.

Seismic Response Analysis of Twisted Buildings with Three Planar Shapes (세 가지 평면 형상에 따른 비틀림 비정형 빌딩구조물의 지진응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, a twisted shape structure with an elevation form favorable to the resistance of vibration caused by wind loads is selected from among the forms of high-rise buildings. The analytical model is a square, triangular, and hexagonal plane with a plane rotation angle of one degree from 0 to 3 degrees per each story. As a result of the analysis, as the twist angle increased, story drift ratio is increased. Responses with different eccentricity rates were shown by analytical models. Therefore planar shapes designed symmetrically to the horizontal axis of X and Y are considered advantageous for eccentricity and torsion deformation. In the case of the bending moment of the column, the response was amplified in the column supporting the base floor, the roof floor, the floor in which the cross-section of the vertical member changes, and the floor having the same number of nodes as the base floor. Finally, the axial force response of the column is determined to be absolutely affected by the gravity load compared to the lateral load.

Experimental Evaluation on Seismic Performance of Filled Composite Beam - to - Forming Angle Composite Column Connections (충전형 합성보와 포밍앵글 기둥 접합부의 내진성능에 대한 실험적 평가)

  • Kim, Hyoung Seop;Lee, Kyungkoo;Koo, Jimo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2016
  • In this study, the seismic performance of connections between filled composite beam (CG beams) and forming angle composite (FAC) column was experimentally evaluated. First, the bending tests were conducted on two CG beams and the axial tests were conducted on two FAC columns. Then, based on these preliminary test results, the cyclic loading test were performed on two interior connections between CG beam and FAC column. The main difference of two specimens is the plate shape of the CG beam. The test results showed that both specimens achieved the maximum story drift capacity over 0.04 radian which is required for special moment frame.