• 제목/요약/키워드: stormwater

검색결과 350건 처리시간 0.026초

LABORATORY EXPERIMENTAL ANALYSIS OF STORMIWATER RUNOFF DECREASE EFFECTS BY USING POROUS PAVEMENTS IN URBAN AREAS

  • Yi, Jae-eung;Yeo, Woon-Gwang
    • Water Engineering Research
    • /
    • 제5권1호
    • /
    • pp.37-45
    • /
    • 2004
  • As one alternative to alleviate damages caused by stormwater runoff, the effects of runoff quantity reduction are analyzed when porous pavement is used. Porous pavements with various depths, general pavement and an artificial rainfall generator are installed for laboratory experiments. Runoff changes are analyzed according to the various rainfall durations. The rainfall intensity of 150 mm/hr is generated for 30 minutes, 60 minutes, and 120 minutes. For porous pavements with 80 cm thickness, 100%, 93%, 56% of discharge is infiltrated through soil, respectively. For porous pavements with 20 cm thickness, 81%, 32%, 28% of discharge is infiltrated through soil, respectively. It is found that the porous pavements are able to decrease the runoff.

  • PDF

레인가든이 지하유출 및 첨두유량 감소에 미치는 효과 (Effects of Rain Garden on Reduction of Subsurface Runoff and Peak Flow)

  • 김창수;성기준
    • 한국환경복원기술학회지
    • /
    • 제14권5호
    • /
    • pp.69-79
    • /
    • 2011
  • This study assessed the subsurface runoff and peak flow reduction in rain gardens. The results showed that the highest water retention was found in rain garden mesocosms in which Rhododendron lateritium and Zoysia japonica were planted, followed by mesocosms in which either R. lateritium or Z. japonica was planted, and the lowest water retention rate was found in non-vegetated control treatment mesocosms(${\alpha}$ < 0.05). Although higher rainfall intensity caused a decrease of peak flow reduction in both vegetated and non-vegetated treatments, peak flow reduction was the greatest in mesocosms with mixed plants. A rain garden can be an effective tool for environment-friendly stormwater management and improving ecological functions in urban areas. Depending on the purpose such as delaying runoff or increasing infiltration, various plant types should be considered for rain garden designing.

BASELINE MEASUREMENTS ON THE PERFORMANCE OF FOUR CONSTRUCTED WETLANDS IN TROPICAL AUSTRALIA

  • Fell, A.;Jegatheesan, V.;Sadler, A.;Lee, S.H.
    • Environmental Engineering Research
    • /
    • 제10권6호
    • /
    • pp.316-327
    • /
    • 2005
  • Constructed wetlands provide several benefits that are not solely limited to storm water management and are becoming common in storm water management. In this research, four recently constructed wetlands underwent in situ and laboratory water sampling to determine their efficiency in removing storm water pollutants over a 5-month period. From the sampling results, it was determined that each of the wetlands was able to reduce the concentration of pollutants in the stormwater. To aid in the assessment of the wetlands against each other, a model was developed to determine the extent of removal of stormwater pollutants over the length of the wetland. The results from this model complimented the data collected from the field. Improvements, such as increased amounts of vegetation were recommended for the wetlands with the aim of increasing the effectiveness. Further investigations into the wetlands will allow for better understanding of the wetland's performance.

철도지역의 비점오염원 유출특성 (Estimation of Runoff Characteristics of Nonpoint Pollutant Source in Railroad Area)

  • 이춘식;서규태;윤조희;권헌각;이재운;천세억
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.511-520
    • /
    • 2014
  • The MFFn(Mass first flush), EMCs(Event mean concentrations) and runoff loads were analyzed for various rainy events(monitoring data from 2011 to 2012) in transportation area(rail road in station). The pollutant EMCs by volume of stormwater runoff showed the BOD5 9.6 mg/L, COD 29.9 mg/L, SS 16.7 mg/L, T-N 3.271 mg/L, T-P 0.269 mg/L in the transportation areas(Railroad in station). The average pollutant loading by unit area of stormwater runoff showed the BOD5 $27.26kg/km^2$, COD $92.55kg/km^2$, SS $50.35kg/km^2$, T-N $10.13kg/km^2$ and T-P $10.13kg/km^2$ in the transportation areas. Estimated NCL-curve(Normalized cumulated-curve) was evaluated by comparison with observed MFFn. MFFn was estimated by varying n-value from 10% to 90% on the rainy events. The n-value increases, MFFn is closed to '1'. As time passed, the rainfall runoff was getting similar to ratio of pollutants accumulation. The result of a measure of the strength of the linear relationship between observed data and expected data under model was good.

우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과 (Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System)

  • 이광춘;최봉철;임봉수
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.