• Title/Summary/Keyword: storm waves

Search Result 113, Processing Time 0.029 seconds

An Experimental Study of Sand Beach Profile Evolution under Regular Waves Corresponding to Storm and Normal Conditions (규칙파 조건에서의 사질해안 폭풍파와 평상파 단면변화 실험연구)

  • Choi, Junwoo;Roh, Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.333-342
    • /
    • 2017
  • In order to understand the mechanism of the cross-shore evolution of storm (barred) and normal (nonbarred) profiles of a sandy beach, the vertically two-dimensional laboratory experiment was performed with a movable bed. The beach profiles and free surface motion were measured under monochromatic wave conditions evolving the storm and normal beach profiles. The observation was conducted in the surf zone during the alternation of the two wave conditions to reach its quasi-equilibrium state. The sandbar-crest and trough and the steep berm were evolved due to the plunging breakers in the storm case, and the bar-trough was decayed due to the spilling breakers in the normal case. From the measurements, it was found that the storm wave case was in an erosion state and the normal wave case was in an accretion state. The strong undertow, which is a dominant factor of the offshore migration mechanism, was developed in the storm wave case, and the weak undertow was developed in the normal wave case. The skewness and the asymmetry of the nonlinear wave motion, which is a dominant factor of the onshore migration mechanism, was measured similarly in both cases.

An Analysis of Statistical Characteristics of Nonlinear Ocean Waves (비선형 해양파의 통계적 특성에 대한 해석)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.112-120
    • /
    • 2010
  • In this paper time series wave data measured continuously for 24 hours during a storm in Yura Sea Area are used to investigate statistical characteristics of nonlinear waves. The exceedance probability of wave height is compared using the Rayleigh distribution and the Edgeworth-Rayleigh (ER) distribution. Wave data which show stationary state for 10 hours contain 4600 waves approximately. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The Rayleigh ($H_{rms}$) distribution follows the exceedance probability of wave height in general and predicts the probability of freak waves well. The ER distribution overpredicts the exceedance probability of wave heights and the occurrence of freak waves. If wave data measured for 30 minute period which contains 250 waves are used, the ER distribution can predict the occurrence probability of freak waves well. But it overpredicts the probability of overall wave height If no freak wave occurs, the Rayleigh ($H_{rms}$) distribution agrees well with wave height distribution for the most of wave height ranges. The wave height distribution of freak waves of which height are less than 10 m shows similar tendency compared with freak waves greater than 10 m. The value of $H_{max}/H_{1/3}$ is related to the kurtosis of wave elevation. It seems that there exists threshold value of the kurtosis for the occurrence of freak waves.

Relativistic Radiation Belt Electron Responses to GEM Magnetic Storms: Comparison of CRRES Observations with 3-D VERB Simulations

  • Kim, Kyung-Chan;Shprits, Yuri;Subbotin, Dmitriy;Ni, Binbin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.1-90.1
    • /
    • 2012
  • Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch-angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch-angle scattering by plasmaspheric hiss inside the plasmasphere. We provide a detailed description of simulations for each of the GEM storm events.

  • PDF

Assessing Vulnerability to Climate Change of the Physical Infrastructure in Korea Through a Survey of Professionals (우리나라 사회기반시설의 기후변화 취약성 평가 - 전문가 설문조사를 바탕으로 -)

  • Myeong, Soojeong;Yi, Donggyu
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.347-357
    • /
    • 2009
  • This study conducted a vulnerability assessment on Korea's physical infrastructure to provide base data for developing strategies to strengthen Korea's ability to adapt to climate change. The assessment was conducted by surveying professionals in the field of infrastructure and climate change science. A vulnerability assessment was carried out for seven climate change events: average temperature increases, sea level rise, typhoons and storm surges, floods and heavy rain, drought, severe cold, and heat waves. The survey asked respondents questions with respect to the consequences of each climate change event, the urgency of adaptation to climate change, and the scale of investment for adaptation to each climate change event. Thereafter, management priorities for infrastructure were devised and implications for policy development were suggested. The results showed that respondents expected the possibility of "typhoons and storm surges" and "floods and heavy rain" to be the most high. Respondents indicated that infrastructure related to water, transportation, and the built environment were more vulnerable to climate change. The most vulnerable facilities included river related facilities such as dams and riverbanks in the "water" category and seaports and roads in the "transport and communication" category. The results found were consistent with the history of natural disasters in Korea.

A Design of Disaster Prevention System and Detection of Wave Overtopping Number for Storm Surge base on CCTV (CCTV를 활용한 폭풍 해일의 월파 횟수 탐지 및 방재 시스템 설계)

  • Choi, Eun-Hye;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.258-265
    • /
    • 2012
  • Our country is suffering from many human victims and property damages caused to occur great and small tidal waves in southern areas every year. Even though there were progressing many researches for storm surges, it was required more researches for detection of tidal wave and prevention system of its which can be applied in practical living fields. In this paper, we propose the disaster prevention system that can approximately detect a dangerousness of coast flooding and number of overtopping per time based on images of CCTV considering actual field application. And if it is detected a hazard of flooding of coast, the proposed detection system for tidal wave based GIS is quickly informed the areas of flooding to manager. The analyzing results of CCTV image of this proposed are derived from difference images between photos of fine day and photos or videos which are taken for the typhoon which is called "DIANMU" at our laboratory.

Characteristics of Long Period Resonant Oscillations around Chukpyon Harbor (죽변항 수역의 장주기 수면진동 특성)

  • 정원무;박우선;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.193-203
    • /
    • 1996
  • Long period waves were measured at two stations outside and inside Chukpyon Harbor using two pressure-type wave gauges for one week that covers storm sea period. Based on the collected data the characteristics of long-period resonant oscillations were analysed: the resonant period corresponding to the peak spectral density are slightly different from one to the component wave period with the largest amplification ratio, and the latter period is suggested as that of the first resonant mode. From the analysed field data and numerical modeling, the first resonant mode of Chukpyon Harbor region appeared to be around 12 minutes with amplification ratio of 7, whose amplitude varies 10-20 cm inside of the harbour, and also the second mode appeared to be around 6 minutes. The waves of 2-3 minute periods were resonated apparently in the harbour, which is considered to be generated from group-bounded irregular waves and non-linear wave-wave interaction etc. The linearly decreasing reflection coefficients used in the numerical modeling appeared to be an alternative in calculating reflected waves in harbor.

  • PDF

Coastal Protection with the Submerged Artificial Bio-reefs (인공 Bio-reef에 의한 해변침식방지)

  • Lee Hun;Lee Joong-Woo;Lee Hak-Sung;Kim Kang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.159-166
    • /
    • 2004
  • The beach, a margin between the sea and the land, is an extremely dynamic zone, for it is here that the motion of the sea interacts with the sediment, rock of the land or the artificial barriers. In order to prohibit or retard erosions due to the extreme Typhoon or storm induced waves, man has constructed these of temporary or more permanent nature, but they caused problems of other erosions from the secondary effect of them and a bad influence on the seascape. In considering the energy available to accelerate sediment transport and erosion in the surf zone, where the waves are broken, and offshore beyond the breaker line, the wave height and the wave period should be taken account. Hence, we tried to present an applicability of the submerged artificial Bio-reefs analyzing waves by a numerical model such that they could reduce the wave power without the secondary effect and restoration of marine ecologies. A new technique of beach preservation is by artificial reefs with artificial and/or natural kelps or sea plants. By engineering the geometry of the nearshore reef, the wave attenuation ability of the feature can be optimized Higher, wider and longer reefs provide the greatest barrier against wave energy but material volumes, navigation hazards, placement methods and other factors require engineering considerations for the overall design of the nearshore reefs.

  • PDF

Review of Video Imaging Technology in Coastal Wave Observations and Suggestion for Its Applications (비디오 영상 자료를 이용한 연안 국지파랑 관측기술과 그 활용에 대한 고찰)

  • Lee, Dong-Young;Yoo, Je-Seon;Park, Kwang-Soon
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.415-422
    • /
    • 2009
  • The wave observation system in Korea has been established with an emphasis on pointmeasurement based on in situ instrumentations. However, the system cannot fully investigate the coastal wave-related problems that are significantly localized and intensified with three-dimensional regional geometries. Observation technique that can cover local processes with large time and spatial variation needs to be established. Video imaging techniques that can provide continuous monitoring of coastal waves and related phenomena with high spatial and temporal resolutions at minimum cost of instrumentation risks are reviewed together with present status of implementation in Korea. Practical applications of the video imaging techniques are suggested to tackle with various coastal issues of public concern in Korea including, real-time monitoring of wave runup and overtopping of swells on the east coast of Korea, longshore and rip currents, morphological and bathymetric changes, storm surge and tsunami inundation, and abnormal extreme waves in the west coast of Korea, etc.

Incorporation of Electromagnetic Ion cyclotron waveinto Radiation Belt environment model

  • Kang, Suk-Bin;Choi, Eunjin;Hwang, Junga;Kim, Kyung-Chan;Lee, Jaejin;Fok, Mei-ching;Min, Kyoungwook;Choi, Cheongrim;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.132.1-132.1
    • /
    • 2012
  • Radiation Belt Environment (RBE) model has developed to understand radiation belt dynamics as it considers whistler mode hiss and chorus waves which is responsible for relativistic electron acceleration and precipitation. Recently, many studies on electron loss by pitch-angle scattering have reported that elctromagnetic ion cyclotron (EMIC) wave is also responsible for main loss mechanism in dusk and equatorial regeion. Here, we attempt to incorporate EMIC into RBE model simulation code to understand more detailed physical dynamics in Radiation belt environemnt. We compare this developed model to data during storm events where both of electron loss and EMIC waves were detected.

  • PDF

A study on the optimal equation of the continuous wave spectrum

  • Cho, Hong-Yeon;Kweon, Hyuck-Min;Jeong, Weon-Mu;Kim, Sang-Ik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2015
  • Waves can be expressed in terms of a spectrum; that is, the energy density distribution of a representative wave can be determined using statistical analysis. The JONSWAP, PM and BM spectra have been widely used for the specific target wave data set during storms. In this case, the extracted wave data are usually discontinuous and independent and cover a very short period of the total data-recording period. Previous studies on the continuous wave spectrum have focused on wave deformation in shallow water conditions and cannot be generalized for deep water conditions. In this study, the Generalized Extreme Value (GEV) function is proposed as a more-optimal function for the fitting of the continuous wave spectral shape based on long-term monitored point wave data in deep waters. The GEV function was found to be able to accurately reproduce the wave spectral shape, except for discontinuous waves of greater than 4 m in height.