• Title/Summary/Keyword: storm peak

Search Result 172, Processing Time 0.027 seconds

A Case Study on Development of Stormwater Retention and Infiltration Pond System (우수저류 및 침투연못 시스템개발 사례연구 - 우수 저류 및 침투 효과를 중심으로 -)

  • Lee, Jae Chul;Yoon, Yeo Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.52-61
    • /
    • 2003
  • This study was carried out to analyze the effects of stormwater retention and infiltration pond on reduction of flood peak and volume in a experimentally developed ecological pond. The experimental site has 542$m^2$ watershed area, 1,310mm yearly-averaged rainfall. And the area of the retention pond is 60$m^2$, the maximum water depth is 0.5m, the maximum and average storage is 15$m^3$and 9.3$m^3$d. And the area of infiltration pond is 58$m^2$, and the water depth varies 0.2m~0.5m. The monitoring system consists of one rainfall gage, one Parshall flume and acoustic water level gage, two rectangular weirs and acoustic water level gage for discharge gaging, and one data recording unit. Data from ten storm events in total, three storm events in year 2000 and seven storm events in year 2001, were collected. From the data the evaporation rate was achieved with the water balance equation, and the result shows 5.0mm/day in average. The result from the analysis of the effects on reduction of flood peak and volume, is that 14% reduction of flood volume and 15% reduction of flood peak in retention pond and 49% reduction of flood volume in infiltration pond.

A Study on the Calculation of Storage Volume of Storm-Water Detention Basins for Small Urban Catchments (도심지 소유역에 적용 가능한 우수저류조의 용량 산정에 관한 연구)

  • Kim, Dae Geun;Koh, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.619-624
    • /
    • 2005
  • This work is for examining a simplified equation based on the rational formula, which can easily decide storm-water detention volume in small urban catchments. The storm-water detention volume is determined by the inflow hydrograph flowing to detention basin and the outflow hydrograph discharged from the detention basin. The ratio of average outflow over the period of rainfall duration against allowable discharge was 0.5 in former simplified equation. But this research has found that the average outflow ratio depends on the storage methodology. In the case of the on-line storage method, the average outflow ratio is a function of the time of concentration of the catchments and rainfall duration, which ranged from 0.5~1.0. In the case of the off-line storage method, the average ratio is a function of peak discharge and allowable discharge except above time of concentration and rainfall duration, where its function value ranged from 1.0~2.0. When applying this equation to small catchment in Mokpo city, South Korea, we could easily calculate the relation curve between the storm-water detention volume and allowable discharge.

Runoff Analysis due to the Moving Storm (이동강우에 의한 유출영향분석)

  • Han, Kun-Yeun;Jeon, Min-Woo;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.823-836
    • /
    • 2004
  • Using the simple geometry for the idealized catchment consisting of two plane surfaces and a stream between them, runoff was analysed for the moving storms based on the kinematic wave equation. The storm velocity applied in this study was 0.25∼2.0 m/s moving up, down and cross direction of catchment. Applied rainfall distribution types are uniform, advanced, delayed, intermediate type. The results indicate that the moving storms of cross direction generate the largest peak runoff, and the smallest runoff appears in the case of up stream direction. The sensitivity of runoff to rainfall distribution types decreases as storm velocity increases. It is clear that faster storm velocity generates faster peak time and becomes thin hydrographs rapidly.

Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyang-dam Watershed (기후변화에 따른 미래 극한호우사상이 소양강댐 유역의 유량 및 유사량에 미치는 영향)

  • Han, Jeong Ho;Lee, Dong Jun;Kang, Boosik;Chung, Se Woong;Jang, Won Seok;Lim, Kyoung Jae;Kim, Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.160-169
    • /
    • 2017
  • The objective of this study are to analyze changes in future rainfall patterns in the Soyang-dam watershed according to the RCP 4.5 scenario of climate change. Second objective is to project peak flow and hourly sediment simulated for the future extreme rainfall events using the SWAT model. For these, accuracy of SWAT hourly simulation for the large scale watershed was evaluated in advance. The results of model calibration showed that simulated peak flow matched observation well with acceptable average relative error. The results of future rainfall pattern changes analysis indicated that extreme storm events will become more severe and frequent as climate change progresses. Especially, possibility of occurrence of large scale extreme storm events will be greater on the periods of 2030-2040 and 2050-2060. In addition, as shown in the SWAT hourly simulation for the future extreme storm events, more severe flood and turbid water can happen in the future compared with the most devastating storm event which occurred by the typhoon Ewiniar in 2006 year. Thus, countermeasures against future extreme storm event and turbid water are needed to cope with climate change.

Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park (국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Lee, Sang-Ho;Kim, Hyung-Ho;Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

Application of SWMM for Management of the Non-point Source in Urban Area -Case Study on the Pohang City- (도시지역 비점오염원 관리를 위한 SWMM의 적용 -포항시를 대상으로-)

  • Lee, Jae-Yong;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.247-254
    • /
    • 2008
  • Non-point source pollution that originates from surface applied chemicals in either liquid or solid form is a part of urban activities and it appears in the surface runoff caused by rainfall. This study investigates the characteristics of non point source pollution in relation to storm events and the first washing effect in the Study area, which is comprised of different land use types. Then, a Best Management Practices (BMP) model, for urban areas, is applied with the Storm water Management Model (SWMM) Windows Interface which was developed by the EPA in the USA. During the storm event analysis of the hydrographic and pollutographic data showed that the peak of pollutants concentration was within the peak flow, 30 to 60 minute into the storm event in the Study area. The results of simulation using SWMM Windows Interface, Structure Techniques as applied in the study were highly efficient for removal of pollutants. Predicted removal efficiency was 26.0% for SS, 22.1 for BOD, 24.1% for COD, 20.6% for T-N, and 21.6% for T-P, respectively.

Analysis of Typhoon Storm Occurrence and Runoff Characteristics by Typhoon Tracks in Nakdong River Basin (낙동강유역의 태풍경로별 호우발생특성 및 유출특성 분석)

  • 한승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.64-73
    • /
    • 1996
  • When typhoon occurs, the meteorological conditions get worse and can cause a large damage from storm and flood . This damage, however, can be minimized if a precise analysis of the runoff characteristics by typhoon tracks is used in the flood contorl This paper aims at the analysis of storm occurrence and runoff characteristics by typhoon tracks in Nakdong river basin. Therefore, the data of 14 typhoons which invaded Nakdong river basin during the period from 1975 to 1991 were collected, analyzed, and studied. The major results of this study are as followings; 1) The frequency of the typhoon occurrence here in Korea was affected by the storms three times a year on the average. The highest-recorded frequency was during the months of July to September. 2) The survey of the track characteristics depending on the forms of the storm in the Nakdong river basin showed that typhoon storm advanced from the south of the basin to the north, while the frontal type storm was most likely to advanced from the west to the north. 3) Typhoon tracks are classified into three categories, 6 predictors with high correlation coefficient are finally selected, and stepwise multiple regression method are used to establish typhoon strom forecasting models. 4) The riview on the directions of progress of the storm made it clear that the storm moving downstream from upstream of the basin could develop into peak discharge for ca short time and lead to more flood damage than in any other direction.

  • PDF

A Study on the Effects of the Type of Rainfall Distribution upon the Variation of the Critical Storm Duration : Sanbon Watershed (강우분포형태에 따른 임계지속기간의 변화 연구: 산본유역을 중심으로)

  • Yun, Yeo-Jin;Jeong, Sun-U;Jeon, Byeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 1998
  • In determining design runoff for the design of drainage systems, the concept of critical storm duration is applied. However, rainfall distribution is usually determined without well-defined standards. In this paper, through the application of ILLUDAS model to Sanbon basin, which is a small urbanized watershed, effects of various rainfall distributing types upon the determination of critical storm duration are throughly analyzed. As a result, it is revealed that peak discharge rates as well as critical storm duration are greatly influenced by the applied of rainfall distributions such as uniform, triangular, trapezoid, huff, central type using IDF curve. Keywords : critical storm duration, rainfall distribution, urban runoff, design storm, ILLUDAS.

  • PDF

Inundation Numerical Simulation in Masan Coastal Area (마산 연안의 침수 수치모형 실험)

  • Kim, Cha-Kyum;Lee, Jong-Tae;Jang, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.985-994
    • /
    • 2010
  • Typoon Maemi landed on the southern coast of Korean Peninsula at 21:00, September 12, 2003 with a central pressure of 950 hPa. A three dimensional (3D) inundation model was established to calculate the storm surge and flooded area due to Typoon Maemi. A field survey of storm surge traces in Masan City was carried out to evaluate the inundation water depth. Hydromet-Rankin Vortex model was used to calculate the atmospheric pressure and the surface wind fields. The inundation area, storm surge and typoon-induced current were calculated using the 3D model. The peak of computed storm surge in Masan Port using the 3D model was 238 cm, and the observed peak was 230 cm. The simulated storm surge and the inundation area showed good agreement with field survey data. The comparison of the 3D and the two dimensional (2D) models of storm surge was carried out, and the 3D model was more accurate. The computed typoon-induced currents in the surface layer of Masan Bay went into the inner bay with 30~60 cm/s, while the currents in the bottom layer flowed out with 20~40 cm/s.

The Effect of Rainfall on the Water Quality of a Small Reservoir (Lake Wangkung, Korea)

  • Hwang, Gil-Son;Kim, Jae-Ok;Kim, Jai-Ku;Kim, Young-Chul;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.39-43
    • /
    • 2005
  • The dynamics of water quality with the storm events were analyzed in a small reservoir for irrigation, Lake Wangkung. Water quality of the inflowing stream fluctuated seasonally with the variation of flow rate. Thermal stratification was consistent from April to October below 2 m depths and anoxic layer was developed below 2 m depth in summer. The unique feature of temperature showed that thermal stratification was disrupted by a heavy rain event during monsoon, but hypolimnetic hypoxia were reestablished after a few days. Phosphorus and nitrogen increased immediately following storm events. The marked increase may be due to the input of P-rich storm runoff from the watershed. Internal phosphorus loading can be one of the explanations for TP increases in summer. When there was a storm, total populations of phytoplankton and zooplankton was reduced immediately following the storm, indicating possible flushing of algae and zooplankton. After a lag period of low-density the plankton population bloomed to a peak again within five days after the storm. Turbid water in lake became clear again which coincided with the time of the phytoplankton buildup. The results demonstrate that water quality is regulated greatly by rainfall intensity in Lake Wangkung.