• Title/Summary/Keyword: storm characteristics

Search Result 412, Processing Time 0.025 seconds

A DETECTION STUDY OF THE IONOSPHERIC TOTAL ELECTRON CONTENTS VARIATIONS USING GPS NETWORK (GPS 기준국망을 이용한 전리층 총전자수 변화 검출 연구)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2007
  • We established a regional ionospheric model for investigating ionospheric TEC (Total Electron Contents) variations over the Korean Peninsula during major geomagnetic storms. In order to monitor the ionospheric TEC variations, we used nine permanent GPS reference stations uniformly distributed in South Korea operated by the Korea Astronomy and Space Science Institute (KASI). The cubic spline smoothing (CSS) interpolation method was used to analyze the characteristics of the ionospheric TEC variations. It has been found that variations of TEC over the Korean Peninsula increase when a major geomagnetic storm occurred on November 20, 2003. The TEC has increased about one and a half of those averaged quite days at the specific time during a geomagnetic storm. It has been indicated that the KASI GPS-derived TEC has a correlation with the geomagnetic storm indices (eq. Kp and Dst indices).

Estimation of Polar Cap Potential and the Role of PC Index

  • Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.259-267
    • /
    • 2012
  • Polar cap potential has long been considered as an indicator for the amount of energy flowing in the magnetosphere-ionosphere system. Thus, the estimation of polar cap potential is important to understand the physical process of the magnetosphere. To estimate the polar cap potential in the Northern Hemisphere, merging electric field by Kan & Lee (1979) is adopted. Relationships between the PC index and calculated merging electric field ($E^*$) are examined during full-time and storm-time periods separately. For this purpose Dst, AL, and PC indices and solar wind data are utilized during the period from 1996-2003. From this linear relationship, polar cap potential (${\Phi}^*$) is estimated using the formula by Doyle & Burke (1983). The values are represented as $58.1{\pm}26.9$ kV for the full-time period and $123.7{\pm}84.1$ kV for a storm-time period separately. Considering that the average value of polar cap potential of Doyle & Burke (1983) is about 47 kV during moderately quiet intervals with the S3-2 measurements, these results are similar to such. The monthly averaged variation of Dst, AL, and PC indices are then compared. The Dst and AL indices show distinct characteristics with peaks during equinoctial season whereas the average PC index according to the month shows higher values in autumn than in spring. The monthly variations of the linear correlation coefficients between solar wind parameters and geomagnetic indices are also examined. The PC-AL linear correlation coefficient is highest, being 0.82 with peaks during the equinoctial season. As with the AL index, the PC index may also prove useful for predicting the intensity of an auroral substorm. Generally, the linear correlation coefficients are shown low in summer due to conductance differences and other factors. To assess the role of the PC index during the recovery phase of a storm, the relation between the cumulative PC index and the duration is examined. Although the correlation coefficient lowers with the storm size, it is clear that the average correlation coefficient is high. There is a tendency that duration of the recovery phase is longer as the PC index increases.

Estimation of the Stormwater Impoundments Volume Dependent on the Durations of Design Rainfall (계획강우의 지속기간에 따른 저류지용량의 산정)

  • Yun, Yeo-Jin;Lee, Jae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.415-426
    • /
    • 2001
  • After Disaster Impact Assessment(DIA) Program was particed, the wide variety of hydrological data are estimated by introducing the concept of critical storm duration to calculate the stormwater impoundments as the alternative of increasing runoff due to many developments. Critical storm duration is varied by a lot of hydraulic structures, drainage characteristics, temporal distribution of design rainfall, return period, and runoff models. In this study the methods of estimating the proper volume to design the stormwater impoundments are proposed to determine the required volume by comparing and analyzing the maximum stormwater impoundments in accordance with the impoundment volume and rainfall duration by using the concept of storage ratio presented in the existing studies. The methods of determining the critical storm duration of design rainfall which cause the maximum load from the runoff hydrograph will be studied as analyzing rainfall-runoff using the various runoff models and observed data.

  • PDF

Wave Hindcasting on the Storm Waves at the Korean Straits of April, 2016 (2016년 4월 대한해협 폭풍파랑 후측모의 실험)

  • Chun, Hwusub;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.36-45
    • /
    • 2017
  • In the present study, the storm waves at the Korean Straits of April, 2016 have been reproduced by the wave hindcasting, and then their characteristics were investigated. Before the wave hindcasting, the wave measurements at the Korean Straits were analyzed. The analysis showed that the waves at the Korean Straits were dominated by the Northeastern waves, same as those in the East Sea. Accordingly, the wave hindcasting was been carried out with the same condition in Ahn et al. (2016). In the numerical results, the maximum significant wave height at the Korean Straits was 5.06 m, and the corresponding significant wave period was 9.2 s. The computed significant wave heights and wave periods were overestimated by 4 cm and 0.8 s, respectively. After the wave hindcasting, the computed significant wave heights and peak periods were compared with the JONSWAP relationship. This comparison showed that the storm waves at the Korean Straits were close to wind waves, not swell.

A Study of Predicting 3-dimensional Welding Residual Stresses Distribution for T-joint Fillet Specimen (십자형 용접 시편의 3차원 용접 잔류응력 분포 예측에 관한 연구)

  • Yoo, Mi-Ji;Lee, Jang-Hyun;Hwang, Se-Yun;Kim, Kyung-Su;Kim, Sung-Chan
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.84-90
    • /
    • 2010
  • Fillet welding accounts for about 80% of all constructing process of ship and ocean structure. T-joint is one of the typical shapes which are frequently reported to experience the fatigue damage when the marine structure meets the storm loads. The fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guidances have required that the fatigue strength assessment method should be compensated by the effect of the residual stress in case that the random loading or storm loading is applied to the marine vessels. This study suggests the computational procedure to analyze the residual stresses of T-joint specimen that is frequently reported to get damaged by the storm loading. Experiment by XRD as well as the 3-D computational welding model is presented in order to get the profile of residual stress. Throughout the comparison of experimental result with the computational result, the computational model was validated. Thereafter, characteristics of he residual stresses in the joint are discussed.

Spatio-temporal Distribution of Surges and Tsunamis in the Korean Peninsula from 1392 to 1910 (조선시대(1392-1910) 해일 발생의 시공간적 분포 특성)

  • Kim, Da Hae;Hong, Seongchan;Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.37-49
    • /
    • 2021
  • Analysis and prediction of storm surges are very important because the global warming has raised sea levels and increased the frequency of massive typhoons, accelerating damage of coastal flooding. However, the data for storm surge prediction is lacking due to the short history of observation in South Korea. The purpose of this study is to investigate the spatial and temporal characteristics of the previous surges and tsunamis based on the historical documents published during the Joseon Dynasty. In addition, we tried to evaluate the damage and spatial extent of such disasters, using the expressions about surge records including heights and number of administrative divisions. As a result, a total of 175 records of surges and tsunamis were compiled from 1392 to 1910: 145 events were extracted through the analysis of the ancient documents, and 30 events were from the previous research. Most of the strorm surges occurred along the west coast during summer season. More than half of the total surges were concentrated for 120 years from the mid 1600s to the mid 1700s, which was estimated to be highly relevant to the climate conditions in East Asia during the Little Ice Age. Hazardous areas by storm and tidal surges were also extracted, including Asan, Ganghwa, and Siheung during the Joseon Dyanisity period.

Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

  • Choi, C.R.;Kim, K.C.;Lee, D.Y.;Kim, J.H.;Lee, E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.113-128
    • /
    • 2008
  • Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum $(Dst_{min})$ is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ${\geq}50%\;or\;{\geq}3nPa$ within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through $Dst_{min}$, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. $(i){\sim}$ 81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is ${\sim}$ 4.5 pressure enhancement events per storm and ${\sim}$ 0.15 pressure enhancement events per hour. (ii) The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii) Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv) A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF $B_y$ and/or $B_z$: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either $|{\Delta}B_z|>2nT\;or\;|{\Delta}B_y|>2nT$. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

An Analysis on Inundation Characteristics of Urban Watershed according to Variation in Return Period of Design Rainfall (설계 강우량의 재현빈도 변화에 따른 도시유역의 침수특성 분석)

  • Park, InHyeok;Ha, SungRyong
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2013
  • This study aims to investigate inundation characteristics such as inundated area, inundation depth according to variation in return period of design rainfall and to draw a comparison between the inundation characteristics by adapting design storm using dual-drainage model. Lidar data is used to construct terrain data with $1m{\times}1m$ resolution in Cheongju. The designed storm by return periods(10year, 30year, 50year and 200year) are acquired from Intensity Duration Frequency curve, which are distributed in 5 minutes interval using Huff's method. As a results, the inundation volume is linearly increased, but inundated area is gradually increased in accordance with swell of return period for design storm. On the other hands, as a result of calculating discharge capacity for each points, deficit of discharge capacity is not observed using designed storm of 10 year return period at every points. If the return period is increased up more than 10 years, both the deficit of discharge capacity for each PT and entire study area are enlarged drastically.

An Analysis of the Temporal Pattern according to Hydrologic Characteristics of Short-Duration Rainfall (단시간강우의 수문학적 특성에 따른 시간분포 분석)

  • Lee, Jung-Sik;Shin, Chang-Dong;Chang, Jin-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.57-68
    • /
    • 2006
  • The objective of this study is to analyze the temporal pattern characteristic of short-duration rainfall defined as a rainfall durations of 6 hours or less by the Huff's 4th quartile distribution. To analyze the temporal pattern characteristic of short-duration rainfall, the rainfall data are classified by rainfall duration and rainfall type(Changma, Typhoon, Severe rain storm, Frontal storm) and change of rainfall segment. Also, the results of this study compared with result of research work of Korea Institute of Construction Technology(1989) and Ministry of Construction & Transportation(2000). The conclusions of this study are as follows; (1) Short-duration rainfall with duration of 6 hours or less is found to be most prevalent frist-quartile storms. (2) In the case of rainfall type, Changma and Severe rain storms and Frontal storm is found second-quartile storms, and Typhoon is found third-quartile storms. (3) In the result by change of sixth segment storms, the type of temporal pattern of rainfall is found to be most prevalent two sixth parts, (4) Comparative analysis of the results shows that shapes of the dimensionless cumulative curves and values are different from those of existing researches.

Evaluating pollution origins of runoff in urban area by stormwater (강우시 도시지역 강우 유출수 오염부하 기원평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.930-934
    • /
    • 2006
  • In this study, we conducted water-quality analysis of wastewater and in-situ flow measurement using automatic flow rate measuring instrument to identify characteristics of wastewater in urban areas, and collected samples in gutter fur storm water drain, rainfall bucket, and aqueduct of pipe from roof, and outfalls of basins to examine the contribution by pollution origins such as base wastewater, atmospheric washing, runoff by roof surface, runoff by road surface, erosion of sewer sediment. In the result, the concentration of pollutants reached peak in the beginning of rainfall due to first flush, was 3 to 10 times higher than average concentration of dry period, and was lower than that of dry period due to dilution of storm water. In the analysis of the contribution by pollution origins, the ratio of load by sewer sediment resuspension to the total pollution load was 54.6% fer COD, and 73.3% fur SS. Accordingly, we can reduce the total pollutant load by periodical dredging and washing of sewer sediment, and control the loadings by overflow of combined sewer overflows.

  • PDF