• Title/Summary/Keyword: storm characteristics

Search Result 412, Processing Time 0.03 seconds

Analysis of Flood due to Storm Surge at Masan Bay (마산만에서 고조로 인한 침수원인 분석)

  • 황호동;이중우;권소현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.217-224
    • /
    • 2004
  • Open-coast storm surge computations are of value in planning and constructing engineering works, especially in coastal regions. Prediction of typhoon surge elevations is based primarily on the use of a numerical model in this study, since it is difficult to study these events in real time or with use of physical models. A simple quasi-two dimensional numerical model for storm surge is considered. In order to understand the model's underlying assumptions, range of validity, and application, we discussed several aspects of typhoons and the physical factors governing storm generation processes. We also followed the basic governing equation, together with the assumption generally taken in their development, to see the principle characteristics of the model from a physical as well as a mathematical point of view. The equations consistent with the model described here are reduced forms of the basic equations and their effects on the resulting numerical scheme are discussed. Finally we applied the model discussed above to a storm surge problem at Masan Bay, the south coast of Korea Effects of astronomical tide, initial water level, and atmospheric pressure setup are considered. We then analyzed the flood at the coastal city and proposed a reasonable way of flood control.

  • PDF

Inundation Analysis on Coastal Zone around Masan Bay by Typhoon Maemi (No. 0314) (태풍 매미(0314호)에 의한 마산만 주변연안역에서의 범람해석)

  • Chun, Jae-Young;Lee, Kwang-Ho;Kim, Ji-Min;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.8-17
    • /
    • 2008
  • Wrenching climatic changes due to ecocide and global wanning are producing a natural disaster. Coastal zones have been damaged by typhoons and accompanying storm surges. Severe waves, and destruction of the environment are adding to the severity of coastal disasters. There has been an increased interest in these coastal zone problems, and associated social confusion, after the loss of life and terrible property damage caused by typhoon Maemi. Especially if storm surges coincide with high ticks, the loss of life and property damage due to high waters are even worse. Therefore, it is desirable to accurately forecast not only the timing of storm surges but also the amount water level increase. Such forecasts are very important from the view point of coastal defense. In this study, using a numerical model, storm surge was simulated to examine its fluctuation characteristics for the coastal area behind Masan Bay, Korea. In the numerical model, a moving boundary condition was incorporated to explain wave run-up. Numerically predicted inundation regimes and depths were compared with measurements from a field survey. Comparisons of the numerical results and measured data show a very good correlation. The numerical model adapted in this study is expected to be a useful tool for analysis of storm surges, and for predicting inundation regimes due to coastal flooding by severe water waves.

Runoff Analysis due to Moving Storms based on the Basin Shapes (I) - for the Symmetric Basin Shape - (유역형상에 따르는 이동강우의 유출영향분석(I) - 대칭유역형상 -)

  • Han, Kun Yeun;Jeon, Min Woo;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.15-25
    • /
    • 2006
  • Using kinematic wave equation, the influence of moving storms to runoff was analysised with a focus on watersheds. Watershed shapes used are the oblong, square and elongated shape, and the distribution types of moving storms used are uniform, advanced and intermediate type. The runoff hydrographs according to the rainfall distribution types were simulated and the characteristics were explored for the storms moving down, up and cross the watershed with various velocity. The shape, peak time and peak runoff of a runoff hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed shapes. A rain storm moving in the cross direction of channel flow produces a higher peak runoff than in the downstream direction and upstream direction. A peak runoff from a storm moving downstream exceeds that from a storm moving upstream. For storms moving downstream peak time was more delayed than for other storm direction in the case of elongated watershed. The runoff volume and time base of the hydrograph decreased with the increasing storm speed.

Storm-Based Dynamic Tag Cloud for Real-Time SNS Data (실시간 SNS 데이터를 위한 Storm 기반 동적 태그 클라우드)

  • Son, Siwoon;Kim, Dasol;Lee, Sujeong;Gil, Myeong-Seon;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.309-314
    • /
    • 2017
  • In general, there are many difficulties in collecting, storing, and analyzing SNS (social network service) data, since those data have big data characteristics, which occurs very fast with the mixture form of structured and unstructured data. In this paper, we propose a new data visualization framework that works on Apache Storm, and it can be useful for real-time and dynamic analysis of SNS data. Apache Storm is a representative big data software platform that processes and analyzes real-time streaming data in the distributed environment. Using Storm, in this paper we collect and aggregate the real-time Twitter data and dynamically visualize the aggregated results through the tag cloud. In addition to Storm-based collection and aggregation functionalities, we also design and implement a Web interface that a user gives his/her interesting keywords and confirms the visualization result of tag cloud related to the given keywords. We finally empirically show that this study makes users be able to intuitively figure out the change of the interested subject on SNS data and the visualized results be applied to many other services such as thematic trend analysis, product recommendation, and customer needs identification.

Safety Analysis of Storm Sewer Using Probability of Failure and Multiple Failure Mode (파괴확률과 다중파괴유형을 이용한 우수관의 안전성 분석)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.967-976
    • /
    • 2010
  • AFDA (Approximate Full Distribution Approach) model of FORM (First-Order Reliability Model) which can quantitatively calculate the probability that storm sewer reach to performance limit state was developed in this study. It was defined as a failure if amount of inflow exceed the capacity of storm sewer. Manning's equation and rational equation were used to determine the capacity and inflow of reliability function. Furthermore, statistical characteristics and distribution for the random variables were analyzed as a reliability analysis. It was found that the statistical distribution for annual maximum rainfall intensity of 10 cities in Korea is matched well with Gumbel distribution. Reliability model developed in this study was applied to Y shaped storm sewer system to calculate the probability that storm sewer may exceed the performance limit state. Probability of failure according to diameter was calculated using Manning's equation. Especially, probability of failure of storm sewer in Mungyeong and Daejeon was calculated using rainfall intensity of 50-year return period. It was found that probability of failure can be significantly increased if diameter is decreased below the original diameter. Therefore, cleaning the debris in sewer pipes to maintain the original pipe diameter should be one of the best ways to reduce the probability of failure of storm sewer. In sewer system, two sewer pipes can flow into one sewer pipe. For this case, probability of system failure was calculated using multiple failure mode. Reliability model developed in this study can be applied to design, maintenance, management, and control of storm sewer system.

The Runoff Characteristics due to Heavy Rainfall in Mountainous River (산지하천의 집중강우에 따른 유출특성에 관한 연구)

  • Kang, Sang-Hyeok;Choi, Jong-In;Park, Jong-Young
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.159-167
    • /
    • 2007
  • In this study, we investigated the application of extending the Huff's method to design discharge being used at present up to the event of concentrated rainfall. As our field study site, we selected Odae Cheon basin in Pheongchang, which was affected by concentrated rainfall in July 2006. Actual concentrated rainfall and design rainfall derived from the Huff's method were used to calculate the discharge and storm water levels, which were compared with the directly measured water-level marks of storm discharges. The results showed that the peak storm discharge from the torrential rainfall was twice higher than the design rainfall. The short term discharges from concentrated rainfall closely corresponded to the rainfall discharges of 150 years storm frequency.

  • PDF

Characteristics of First Flush in Highway Storm Runoff (강우시 발생하는 고속도로 유출수의 초기우수 특성 및 기준)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.641-646
    • /
    • 2004
  • Vehicle emissions from highway landuse include different pollutants such as heavy metals, oil and grease and particulates from fuels, brake pad wear and tire wear. Since highways are impervious and have high pollutant mass emissions from vehicular activity, it is considered as stormwater intensive landuses. Therefore this research was performed to understand the magnitude of first flush and to suggest the criteria of first flush for storm runoff management in highways. The fractions of washed-off mass are very high in first 30% of runoff volume, which suggests a definition of first flush. The washed-off mass stabilizes after 30% of the runoff volume and it is apparent that treatment capacity in the early part of a storm is more valuable than treatment capacity in the later part of the storm. Using the criteria of "high" first flush and "medium" first flush, as 50% of the mass in the first 30% of the volume, and 30 to 50% in the first 30% volume, respectively, more than 30% of the storms showed high first flush. A "first flush friendly" best management practice(BMP), meaning a BMP that can treat a high percentage or all of the initial flow, would be advantageous up to 80% of the events.

Application of SWMM for Management of the Non-point Source in Urban Area -Case Study on the Pohang City- (도시지역 비점오염원 관리를 위한 SWMM의 적용 -포항시를 대상으로-)

  • Lee, Jae-Yong;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.247-254
    • /
    • 2008
  • Non-point source pollution that originates from surface applied chemicals in either liquid or solid form is a part of urban activities and it appears in the surface runoff caused by rainfall. This study investigates the characteristics of non point source pollution in relation to storm events and the first washing effect in the Study area, which is comprised of different land use types. Then, a Best Management Practices (BMP) model, for urban areas, is applied with the Storm water Management Model (SWMM) Windows Interface which was developed by the EPA in the USA. During the storm event analysis of the hydrographic and pollutographic data showed that the peak of pollutants concentration was within the peak flow, 30 to 60 minute into the storm event in the Study area. The results of simulation using SWMM Windows Interface, Structure Techniques as applied in the study were highly efficient for removal of pollutants. Predicted removal efficiency was 26.0% for SS, 22.1 for BOD, 24.1% for COD, 20.6% for T-N, and 21.6% for T-P, respectively.

Analysis of Storm Event Characteristics for Stormwater Best Management Practices Design (강우유출수 관리시설의 설계를 위한 강우사상 특성 분석)

  • Kim, Hak Kwan;Ji, Hyun Seo;Jang, Sun Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.73-80
    • /
    • 2017
  • The objective of this study is to investigate whether the daily rainfall depth derived from daily data represents the event rainfall depth derived from hourly data. For analysis, the 85th, 90th, and 95th percentile daily rainfall depths were first computed using daily rainfall data (1986~2015) collected at 63 weather stations. In addition, the storm event was separated by the interevent time definition (IETD) of 6, 12, 18, and 24 hr using hourly rainfall data. Based on the separated storm events, the 85th, 90th, and 95th percentile event rainfall depths were calculated and compared with the using hourly rainfall data with the 85th, 90th, and 95th percentile daily rainfall depths. The event rainfall depths computed using the IETD were greater than the daily rainfall depths. The difference between the event rainfall depth and the daily rainfall depth affects the design and size of the facility for controlling the stormwater. Therefore, the designer and policy decision-maker in designing the stormwater best management practices need to take into account the difference generated by the difference of the used rainfall data and the selected IETD.