• Title/Summary/Keyword: storm and flood disaster

Search Result 85, Processing Time 0.028 seconds

Development of an outline project cost calculation module for disaster prevention facilities in the living area due to winds and floods (풍수해 생활권 방재시설에 대한 개략 사업비 산정 모듈 개발)

  • Kim, Sol;Lee, Dong Seop;Lee, Jong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • Due to natural disasters such as heavy rain that occurred in the metropolitan area in August 2022, human casualties and property damage are increasing. Accordingly, the government is making efforts to respond to natural disasters, but due to the absence of related standards and standardized standards, problems such as increased construction costs and deterioration in construction quality for disaster prevention facility maintenance projects are occurring. Accordingly, a rough construction cost estimation module was developed and applied to 25 new pumping stations in Korea. As a result of the analysis, the accuracy of the rough construction cost derived through the module recorded 70% of the detailed design cost, which is 4% higher than the previously used rough construction cost accuracy of 66% by the Ministry of Environment. Accordingly, it is expected that the efficiency of the disaster prevention project can be increased if the developed module is used to calculate the rough construction cost for storm and flood disaster prevention in the future.

Development of Urban Flood Analysis Model Adopting the Unstructured Computational Grid (비정형격자기반 도시침수해석모형 개발)

  • Lee, Chang Hee;Han, Kun Yeun;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.511-517
    • /
    • 2006
  • Flood damage is one of the most important and influential natural disaster which has an effect on human beings. Local concentrated heavy rainfall in urban area yields flood damage increase due to insufficient capacity of drainage system. When the excessive flood occurs in urban area, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. In this study, an urban flood analysis model adopting the unstructured computational grid was developed to simulate the urban flood characteristics such as inundation area, depth and integrated with subsurface drainage network systems. By the result, we can make use of these presented method to find a flood hazard area and to make a flodd evacuation map. The model can also establish flood-mitigation measures as a part of the decision support system for flood control authority.

Inundation Analysis on the Region of Lower Elevation of a New Port by Using SWMM5 and UNET Model - Yongwon-dong, Jinhae-si (SWMM5와 UNET 모형을 이용한 신항만 저지대 침수분석 - 진해시 용원동)

  • Lee, Jung-Min;Lee, Sang-Ho;Kang, Tae-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.442-451
    • /
    • 2008
  • We analyzed characteristics of rainfall-runoff for the channel of Yongwon area made by a new port construction. And we conducted inundation analysis on the region of lower elevation near the coast. SWMM5 was calibrated with the storm produced by the typhoon Megi from August 19 to August 20 in 2004, and was verified with the storm from August 22 to August 22 in 2004. We performed hydraulic channel routing of Yongwon channel about typhoon Megi from August 19 to August 20 in 2004 by UNET model which is a hydraulic channel routing. The simulated runoff hydrographs were added to the new stream as lateral inflow hydrographs and a watershed runoff hydrograph was the upstream boundary condition. The downstream boundary condition data were estimated by the measured stage hydrographs. The maximum stage that was calculated by hydraulic channel routing was higher than the levee of inundated region in typhoon Megi. Thus we can suppose an inundation to have been occurred. We performed inundation analysis about typhoon Megi from August 19 to August 20 in 2004 and flood discharge of return period 10~150 years. And we estimated each inundation area. The inundation areas by return periods of storms were estimated by 3.4~5.7 ha. The causes of inundation are low heights of levee crests (D.L. 2.033~2.583 m), storm surges induced by typhoons and reverse flow through the coastal sewers (D.L. -0.217~0.783 m). A result of this study can apply to establish countermeasure of a flood disaster in Yongwon.

The Management System Development for Frequently Flooded Area by Web based (Web기반의 상습침수지구 관리시스템 개발)

  • Jang, Kyung-Soo;Jun, Ji-Young;Keum, Do-Hun;Jee, Hong-Kee
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.636-639
    • /
    • 2007
  • The frequently flooded area has been known as very vulnerable area. This area has nature disasters such as typhoon, storm and flood almost every year. The purpose of this study is to develop a management system for frequently flooded area by Web based. So this system is possible to disaster management which irrespective of time and place. Through this system, general user can easily retrieve status information and obtain that in visual way such as maps. graph, and texts if they have only certain web browsers.

  • PDF

Evaluation System of Flood Damages using Stream Stage (하천수위에 의한 침수피해 평가 시스템)

  • Kim, Jong-Soon;Lee, Young-Dai;Oh, Kook-Yul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.151-158
    • /
    • 2009
  • Many people have been suffering and loosing their property from inundation due to concentrated rain and massive storm. Although, river banks are strengthened and pumping stations are constructed to protect the life and property of people, the flood damages (disaster)could not be controlled, in fact it is increasing. In USA, CWMS (Corps Water Management System) has very good system of integration of study of rainfall data, computation of stream stage and simulation of flood damages, but there is lack of this type of study and analysis in the domestic context, so we have been facing many difficulties in simulation of flood damages. Therefore, a systematic collecting of data analysis and evaluation of flood damages is necessary. The main objective of this study is to suggest a systematic data collection and evaluation method, which could be useful to prevent the life and property from unusual damages. In this study, the system (Flood Damage Evaluation Model; K-FDEM) is proposed to evaluate the flood damages from rainfall with considering many field parameters.

Coastal Complex Disaster Risk Assessment in Busan Marine City (부산 마린시티 해안의 복합재난 위험성 평가)

  • Hwang, Soon-Mi;Oh, Hyoung-Min;Nam, Soo-yong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.506-513
    • /
    • 2020
  • Due to climate change, there is an increasing risk of complex (hybrid) disasters, comprising rising sea-levels, typhoons, and torrential rains. This study focuses on Marine City, Busan, a new residential city built on a former landfill site in Suyeong Bay, which recently suffered massive flood damage following a combination of typhoons, storm surges, and wave overtopping and run-up. Preparations for similar complex disasters in future will depend on risk impact assessment and prioritization to establish appropriate countermeasures. A framework was first developed for this study, followed by the collection of data on flood prediction and socioeconomic risk factors. Five socioeconomic risk factors were identified: (1) population density, (2) basement accommodation, (3) building density and design, (4) design of sidewalks, and (5) design of roads. For each factor, absolute criteria were determined with which to assess their level of risk, while expert surveys were consulted to weight each factor. The results were classified into four levels and the risk level was calculated according to the sea-level rise predictions for the year 2100 and a 100-year return period for storm surge and rainfall: Attention 43 %, Caution 24 %, Alert 21 %, and Danger 11 %. Finally, each level, indicated by a different color, was depicted on a complex disaster risk map.

Trend Analysis of Complex Disasters in South Korea Using News Data (뉴스데이터를 활용한 국내 복합재난 발생 동향분석)

  • Eun Hye Shin;Do Woo Kim;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.50-59
    • /
    • 2023
  • As the diversity of disasters continues to increase, the concept of "complex disasters" has gained prominence in various policies and studies related to disaster management. However, there has been a certain limitation in the availability of the systematic statistics or data in advancing policies and research initiatives related to complex disasters. This study aims to analyze the macro-level characteristics of the complex disasters that have occurred domestically utilizing a 30-year span of a news data. Initially, we categorize the complex disasters into the three types: "Natural disaster-Natural disaster", "Natural disaster-Social disaster", and "Social disaster-Social disaster". As a result, the "natural diaster-social disaster" type is the most prevalent. It is noted that "natual disaster-natural disaster" type has increased significantly in recent 10 years (2011-2020). In terms of specific disaster types, "Storm and Flood", "Collapse", "Traffic Accident", "National Infrastructure Paralysis", and "Fire⋅Explosion" occur the most in conjunction with other disasters in a complex manner. It has been observed that the types of disasters co-ocuuring with others have become more diverse over time. Parcicularly, in recent 10 years (2011-2020), in addition to the aforementioned five types, "Heat Wave", "Heavy Snowfall⋅Cold Wave", "Earthquake", "Chemical Accident", "Infectious Disease", "Forest Fire", "Air Pollution", "Drought", and "Landslide" have been notable for their frequent co-occurrence with other disasters. These findings through the statistical analysis of the complex disasters using long-term news data are expected to serve as crucial data for future policy development and research on complex disaster management.

A Simple Regression Model for Predicting the Wind Damage according to Correlation Analysis Between Wind Speed and Damage: Gyeongsangbuk-do (풍속과 피해액의 상관관계 분석에 따른 강풍 피해예측 단순회귀모형 개발: 경상북도)

  • Song, Chang-Young;Lee, Ho-Jin;Lee, Chang-Jae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.207-211
    • /
    • 2016
  • 최근 세계적으로 기후변화에 따라 자연재해에 의한 피해가 대형화, 가속화 되면서 이를 예측하고 대응할 수 있는 체계적이며 국내 특성을 반영할 수 있는 피해예측 시스템의 필요성이 제기되고 있다. 국내에서는 경험적 통계기반의 강우예측에 대한 연구가 주로 진행되었으며, 강풍에 대한 연구는 부족한 상황이다. 본 연구는 기존의 연구와는 달리 모델링을 통한 예측이 아닌 실제 발생한 강풍 피해 자료를 기반으로 풍속에 따른 피해액을 예측할 수 있는 강풍 피해예측 단순회귀모형을 개발하는 것을 목적으로 한다.

  • PDF

Estimation and Comparison of Benefits of Disaster Prevention Facilities at the Masan Port with CVM and MD-FDA (조건부가치추정법과 다차원홍수피해산정법을 이용한 마산항 재해방지시설의 편익산정 비교)

  • Seo, Inho;Shin, Seungsik
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.4
    • /
    • pp.289-323
    • /
    • 2013
  • This study set out to estimate and compare benefits of damage in case of storm surge at the Masan Port by using two of the most representative methodologies used to estimate benefits in port disaster prevention facility construction, namely CVM(contingent valuation method), which estimates the values of non-market goods, and MD-FDA(multi-dimensional flood damage analysis), which had usually been implemented in flood or dam projects. The benefit estimation for 30 years of costs was 2.5689 trillion won for CVM and 2.9596 trillion won for MD-FDA, which indicates that there was no big difference in benefits among disaster prevention facilities. However, in-depth testing should follow to figure out whether MD-FDA can replace CVM, which has been tested with non-market goods, when estimating the benefits of disaster prevention facilities based on those findings.

A Study on the Construction and Site Selection of the Cloud Data Center considering Disaster Information (재해정보를 고려한 클라우드 데이터센터 입지선정에 관한 연구)

  • Kim, Ki-Uk;Kim, Chang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2575-2580
    • /
    • 2012
  • The aim of this paper is to analyze factors for site selection of the cloud data center and to develop spatial data model considering disasters information based on the GIS. In this paper, historical areas of the natural and human disaster are considered to analyze location of the cloud center. The model is developed using ArcGIS S/W tool. The model is applied on Busan city using disaster data from storm and flood, and small administrative district located Kang-Seo-Gu is selected as site selection of the cloud data center of Busan.