• Title/Summary/Keyword: storage materials

Search Result 2,203, Processing Time 0.032 seconds

Electrochemical Characteristics of Synthesized Nb2O5-Li3VO4 Composites as Li Storage Materials

  • Yang, Youngmo;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • The increasing demand for energy storage in mobile electronic devices and electric vehicles has emphasized the importance of electrochemical energy storage devices such as Li-ion batteries (LIBs) and supercapacitors. For reversible Li storage, alternative anode materials are actively being developed. In this study, we designed and fabricated an Nb2O5-Li3VO4 composite for use as an anode material in LIBs and hybrid supercapacitors. Nb2O5 powders were dissolved into a solution and the precursors were precipitated onto Li3VO4 through a simple, low-temperature hydrothermal reaction. The annealing process yielded an Nb2O5-Li3VO4 composite that was characterized by X-ray diffraction, electron microscopy, and X-ray photoelectron spectroscopy. Electrochemical tests revealed that the Nb2O5-Li3VO4 composite electrode demonstrated increased capacities of approximately 350 and 140 mAh g-1 at 0.1 and 5 C, respectively, were maintained up to 1000 cycles. The reversible capacity and rate capability of the composite electrode were enhanced compared to those of pure Nb2O5-based electrodes. These results can be attributed to the microstructure design of the synthesized composite material.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

An Experimental Study on the Dynamic Characteristics of Rubber Isolator (실험에 의한 방진고무의 동특성에 관한 연구)

  • Kim, W.D.;Kim, K.S.;Kwon, J.D.;Woo, C.S.
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.183-191
    • /
    • 2002
  • Rubber materials with excellent damping property are widely applied for vibration isolators. The dynamic characteristics of the rubber materials for vibration isolators were investigated. Dynamic tests for rubber materials with five different hardness were performed. In dynamic tests for test specimen, non-resonance method was used to obtain the dynamic storage modulus and loss factor. Moreover, the effect of dynamic vibration frequency, strain amplitude and temperature were investigated. As results, the storage modulus and loss factor generally increase when the hardness and frequency increase, and the glass transition temperature is $-50^{\circ}C$ by a large change in modulus and loss factor.

High Energy Density Dielectric Ceramics Capacitors by Aerosol Deposition (상온 분사 공정을 이용하여 제조한 고에너지 밀도 세라믹 유전체 커패시터)

  • Hyunseok Song;Geon Lee;Jiwon Ye;Ji Yun Jung;Dae-Yong Jeong;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.119-132
    • /
    • 2024
  • Dielectric ceramic capacitors present high output power density due to the fast energy charge and discharge nature of dielectric polarization. By forming dense ceramic films with nano-grains through the Aerosol Deposition (AD) process, dielectric ceramic capacitors can have high dielectric breakdown strength, high energy storage density, and leading to high power density. Dielectric capacitors fabricated by AD process are expected to meet the increasing demand in applications that require not only high energy density but also high power output in a short time. This article reviews the recent progress on the dielectric ceramic capacitors with improved energy storage properties through AD process, including energy storage capacitors based on both leadbased and lead-free dielectric ceramics.

Development of a Cost-Effective 20K Hydrogen BET Measurement for Nanoporous Materials (나노다공체 물성 측정을 위한 극저온(20K) 수소 BET 개발 및 응용)

  • Park, Jaewoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.466-470
    • /
    • 2017
  • With the matters of climate change, energy security and resource depletion, a growing pressure exists to search for replacements for fossil fuels. Among various sustainable energy sources, hydrogen is thought of as a clean energy, and thus efficient hydrogen storage is a major issue. In order to realize efficient and safe hydrogen storage, various porous materials are being explored as solid-states materials for hydrogen storage. For those purposes, it is a prerequisite to characterize a material's textural properties to evaluate its hydrogen storage performance. In general, the textural properties of porous materials are analyzed by the Brunauer-Emmett-Teller (BET) measurement using nitrogen gas as a probe molecule. However, nitrogen BET analysis is sometimes not suitable for materials possessing small pores and surfaces with high curvatures like MOFs because the nitrogen molecule may sometimes be too large to reach the entire porous framework, resulting in an erroneous value. Hence, a smaller probe molecule for BET measurements (such as hydrogen) may be required. In this study, we describe a cost-effective novel cryostat for BET measurement that can reach temperatures below the liquefaction of hydrogen gas. Temperature and cold volume of the cryostat are corrected, and all measurements are validated using a commercial device. In this way, direct observation of the hydrogen adsorption properties is possible, which can translate directly into the determination of textural properties.

Fabrication and Evaluation of Hydorgenation Propeties on Mg8Ti2-(10, 20 wt.%)Ni Composites (Mg8Ti2-(10, 20 wt.%)Ni 수소저장합금의 제조 및 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.543-549
    • /
    • 2010
  • The hydrogen energy had recognized clean and high efficiency energy source. The research field of hydrogen energy was production, storage, application and transport. The commercial storage method was using high pressure tanks but it was not safety. However metal hydride was very safety due to high chemical stability. Mg and Mg alloys are attractive as hydrogen storage materials because of their lightweight and high absorption capacity (about 7.6 wt%). Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved. The main emphasis of this study was to find an economical manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. In order to examine their hydrogenation behavior, a Sievert's type automatic pressure-compositionisotherm (PCI) apparatus was used and experiments were performed at 423, 473, 523, 573, 623 and 673 K. The results of the thermogravimetric analysis (TGA) revealed that the absorbed hydrogen contents were around 2.5wt.% for (Mg8Ti2)-10 wt.%Ni. With an increasing Ni content, the absorbed hydrogen content decreased to 1.7 wt%, whereas the dehydriding starting temperatures were lowered by some 70-100 K. The results of PCI on (Mg8Ti2)-20 wt.%Ni showed that its hydrogen capacity was around 5.5 wt% and its reversible capacity and plateau pressure were also excellent at 623 K and 673 K.

The Effect of Planetary Ball Mill Process on the Hydrogenation Behavior of Mg2NiHx (Mg2NiHx 수소화거동에 미치는 기계적합금화 공정의 영향)

  • Lim, Jae-Won;Ha, Won;Hong, Tae-Whan;Kim, Shae-Kwang;Kim, Young-Jig;Park, Hyun-Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.131-139
    • /
    • 1999
  • The objective of this works was to synthesize the$Mg_2Ni$ hydrogen storage materials economically and to eliminate the intial activation process. $Mg_2NiH_x$ was mechanically alloyed under purified hydrogen gas atmosphere using pure Mg and Ni chips. M.A(Mechanical Alloying) was carried out using planetary ball mill for times varying from 12h to 96h under 20bars of hydrogen gas pressure. $Mg_2NiH_x$ started to form after 48h and the homogeneous $Mg_2NiH_x$ composites was synthesized after 96h. From TG analysis, the dehydriding reaction of $Mg_2NiH_x$ started at around $200^{\circ}C$. The result of P-C-T at $300^{\circ}C$ revealed the hydrogen storage capacity of $Mg_2NiH_c$ reached 3.68 wt% and the effective hydrogen storage was 2.38 wt%. The enthalpy difference of absorption-desorption cycling for the hydride formation and the hysteresis were reduced and the plateau flatness and the sloping were improved according to M.A time.

  • PDF

Analysis of Cool-down Operation of Liquid Hydrogen Tank (액체수소 저장탱크의 냉각 방법 분석)

  • HWALONG YOU;BYUNGIL CHOI;KYUHYUNG DO;TAEHOON KIM;CHANGHYUN KIM;MINCHANG KIM;YONGSHIK HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.641-649
    • /
    • 2023
  • This study analyzes the cool-down process of liquid hydrogen storage tanks, which have advantages in terms of large-capacity transfer, storage, and utilization as hydrogen demand increases. A hydrogen liquefaction plant is selected for analysis and an efficient tank cooling method is sought by comparing the time required for the cool-down process with the gas consumption in connection with the gassing-up process required for the operation of the liquid hydrogen storage tank. The results of this study can be referred to in the operation process after the initial start-up and maintenance of the hydrogen liquefaction plant.

Optimal Design of Nonsequential Batch-Storage Network (비순차 회분식 공정-저장조 망구조 최적 설계)

  • 이경범;이의수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.407-412
    • /
    • 2003
  • An effective methodology is .reported for determining the optimal capacity (lot-size) of batch processing and storage networks which include material recycle or reprocessing streams. We assume that any given storage unit can store one material type which can be purchased from suppliers, be internally produced, internally consumed and/or sold to customers. We further assume that a storage unit is connected to all processing stages that use or produce the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. The objective for optimization is to minimize the total cost composed of raw material procurement, setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory hold-up. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems. The first yields analytical solutions for determining batch sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks. For the special case in which the number of storage is equal to the number of process stages and raw materials storage units, a complete analytical solution for average flow rates can be derived. The analytical solution for the multistage, strictly sequential batch-storage network case can also be obtained via this approach. The principal contribution of this study is thus the generalization and the extension to non-sequential networks with recycle streams. An illustrative example is presented to demonstrate the results obtainable using this approach.