• Title/Summary/Keyword: storage function model

Search Result 301, Processing Time 0.028 seconds

Moisture Sorption Isotherm and Quality Deterioration of Dry Jujube (건대추의 등온흡습곡선 및 품질열화특성)

  • 김영숙;안덕순
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • In order to provide informations for designing packaging and storage condition of dry jujube (Zizyphus jujuba MILLER), moisture sorption isotherm was determined for temperatures of 20, 30 and 4$0^{\circ}C$, and quality changes were evaluated as function of temperature and water activity. Dry jujube at a given water activity showed higher equilibrium moisture content for lower temperature. Moisture isothem could be fitted by GAB model equation, giving higher C value, lower m0 and relatively constant k value with increase in temperature. Ascorbic acid was lost more highly at higher temperature and water activity, and showed negligible retention for whole range of water activity and temperature studied after 141 days. Browning increased with water activity up to 0.73 at 30 and 4$0^{\circ}C$. Dry jujube of high water activity had high L value in surface color, which represent brightness of surface color. Considering quality retention in the storage, dry jujube is desired to be dried to water activity of 0.42 and be stored at temperature below 3$0^{\circ}C$

  • PDF

Application of Rainfall-Runoff Models and Provision of Radar Rainfall Data during Flood in Imjin River Basin (임진강 유역의 홍수기 강우-유출모형 적용 및 레이더강우 자료의 활용방안)

  • Kim Seong-joon;Park Roh-hyuk;Maeng Sung-jin
    • KCID journal
    • /
    • v.5 no.1
    • /
    • pp.47-62
    • /
    • 1998
  • The purpose of this study is to evaluate storm runoff models of Imjin river basin(8,117.5$km^2$) for the provision of radar rainfall situation. Two lumped models, Storage Function Model(SFM) and HEC-1 model which are now in use broadly and prov

  • PDF

A Study on Parameters Estimation of Storage Function Model Using the Genetic Algorithms (유전자 알고리듬을 이용한 저류함수모형의 매개변수 추정에 관한 연구)

  • Park, Bong-Jin;Cha, Hyeong-Seon;Kim, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 1997
  • In this study, the applicability of genetic algorithms into the parameter estimation of storage function method for flood routing model is investigated. Genetic algorithm is mathematically established theory based on the process of Darwinian natural selection and survival of fittest. It can be represented as a kind of search algorithms for optima point in solution space and make a reach on optimal solutions through performance improvement of assumed model by applying the natural selection of life as mechanical learning province. Flood events recorded in the Daechung dam are selected and used for the parameter estimation and verification of the proposed parameter estimation method by the split sample method. The results are analyzed that the performance of the model are improved including peak discharge and time to peak and shown that the parameter Rsa, and f1 are most sensitive to storage function model. Based on the analysis for estimated parameters and the comparison with the results from experimental equations, the applicability of genetic algorithm is verified and the improvements of those equations will be used for the augmentation of flood control efficiency.

  • PDF

소형위성 기능시험 및 열주기 시험

  • Park, Jong-Oh;Choi, Jong-Yeon;Kwon, Jae-Wook;Youn, Young-Su;Cho, Seung-Won;Kim, Young-Youn;An, Jae-Chel;Choi, Seok-Won
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • KARI Electrical Test Team performed the SOH (State Of Health) test and Thermal Cycling test for small satellite of KOMPSAT-1 PFM at KARI SITC Highbay as per Storage plan every year, and verified that the system/subsystem units function installed on PFM were good without significant degradation causing from long-term storage. This paper describes the test items, test method, test procedure and selected test result data.

  • PDF

Salinity Routing Through Reservoir using WRAP-SALT (WRAP-SALT를 이용한 저수지 염분 추적)

  • Lee, Chi-Hun;Ko, Taek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.221-221
    • /
    • 2012
  • The WRAP-SALT (Water Rights Analysis Package-SALT) simulation includes computation of end-of-month reservoir storage concentrations and mean monthly reservoir outflow concentrations for each month of the simulation. The model computes reservoir storage loads and concentrations based on load balance accounting algorithms and computes concentrations of water released and withdrawn from a reservoir as a function of the volume-weighted mean concentration of the water stored in the reservoir in the current month or previous months. A load budget accounting of the various component load inflows and outflows entering and leaving a reservoir is performed. A time history of storage concentrations computed for previous months is maintained for use in the lag procedure. This study presents computational methods for routing salinity through reservoirs for incorporation into WRAP-SALT simulation routines and methods for determining values for the parameters of the routing methods.

  • PDF

Development of a Predictive Mathematical Model for the Growth Kinetics of Listeria monocytogenes in Sesame Leaves

  • Park, Shin-Young;Choi, Jin-Won;Chung, Duck-Hwa;Kim, Min-Gon;Lee, Kyu-Ho;Kim, Keun-Sung;Bahk, Gyung-Jin;Bae, Dong-Ho;Park, Sang-Kyu;Kim, Kwang-Yup;Kim, Cheorl-Ho;Ha, Sang-Do
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.238-242
    • /
    • 2007
  • Square root models were developed for predicting the kinetics of growth of Listeria monocytogenes in sesame leaves as a function of temperature (4, 10, or $25^{\circ}C$). At these storage temperatures, the primary growth curves fit well ($R^2=0.898$ to 0.980) to a Gompertz equation to obtain lag time (LT) and specific growth rate (SGR). The square root models for natural logarithm transformations of the LT and SGR as a function of temperature were obtained by SAS's regression analysis. As storage temperature ($4-25^{\circ}C$) decreased, LT increased and SGR decreased, respectively. Square root models were identified as appropriate secondary models for LT and SGR on the basis of most statistical indices such as coefficient determination ($R^2=0.961$ for LT, 0.988 for SGR), mean square error (MSE=0.l97 for LT, 0.005 for SGR), and accuracy factor ($A_f=1.356$ for LT, 1.251 for SGR) although the model for LT was partially not appropriate as a secondary model due to the high value of bias factor ($B_f=1.572$). In general, our secondary model supported predictions of the effects of temperature on both LT and SGR for L. monocytogenes in sesame leaves.

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature

  • Kim, K.;Lee, H.;Gwak, E.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1013-1018
    • /
    • 2014
  • In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and $30^{\circ}C$ for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (${\mu}_{max}$; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at $10{\circ}C$ to $30^{\circ}C$C with a ${\mu}_{max}$ of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The ${\mu}_{max}$ values increased as temperature increased, while LPD values decreased, and ${\mu}_{max}$ and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

Comparative Study on Size Optimization of a Solar Water Heating System in the Early Design Phase Using a RETScreen Model with TRNSYS Model Optimization (RETScreen 모델이용 태양열온수시스템 초기설계단계 설계용량 최적화기법의 TRNSYS 모델과의 비교분석)

  • Lee, Kyoung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.693-699
    • /
    • 2013
  • This paper describes a method for size optimization of the major design variables for solar water heating systems at the stage of concept design. The widely used RETScreen simulation tool was used for optimization. Currently, the RETScreen tool itself does not provide a function for optimization of the design parameters. In this study, an optimizer was combined with the software. A comparative study was performed to evaluate the RETScreen-based approach with the case study of a solar heating system in an office building. The optimized results using the RETScreen model were compared to previously published results with the TRNSYS model. The objective function of the optimization is the life-cycle cost of the system. The optimized design results from the RETScreen model showed good agreement with the optimized TRNSYS results for the solar collector area and storage volume, but presented a slight difference for the collector slope angle in terms of the converged direction of the solutions. The energy cost, life-cycle cost, and thermal performance regarding collector efficiency, system efficiency, and solar fraction were compared as well, and the RETScreen model showed good agreement with the TRNSYS model for the conditions of the base case and optimized design.