• Title/Summary/Keyword: stone-dust

Search Result 71, Processing Time 0.022 seconds

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part 2 - Ceramics, Stone, Concrete, Glass and Briquets, etc. (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형유리규산 농도의 분석 제2부 : 요업, 석재, 콘크리트, 유리, 연탄 및 기타사업장)

  • Kim, Hyunwook;Phee, Young Gyu;Roh, Young Man;Won, Jeoung Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.99-111
    • /
    • 1999
  • The purpose of this study was to evaluate crystalline silica contents in airborne respirable dusts from various manufacturing industries and to compare analytical ability of two different methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy(FTIR). Various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: ceramics, brick, concrete, and abrasive material etc. The personal respirable dust samples were collected using l0mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size. polyvinylchloride (PVC) filters as collection media. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 7500, and 7602 for dust collection and quartz analysis. A total of 48 samples were collected from these industries. Initial analyses of these samples showed log-normal distributions for dust and quartz concentrations. Some results from ceramics and stone exceeded current Korean Occupational Exposure Limits. The average concentrations of personal respirable dust by cyclone were 0.43, 0.24, 0.26, 0.42, 0.53 and $0.29mg/m^3$ in ceramics, stone, concrete, glass, briquets, and others, respectively. A comparison of performance of two analytical methods for quantifying crystalline silica was performed using data from ceramics. The results showed that no significant difference was found between two methods for ceramics. The mean crystalline silica contents determined by XRD were 3.41 % of samples from briquets and 7.18 % from ceramics and were 2.58 % from concrete and 10.33 % from ceramics by FTIR. For crystalline silica analysis, two analytical techniques were highly correlated with $r^2=0.81$ from ceramics. Both cristobalite and tridymite were not detected by XRD and FTIR.

  • PDF

Utilization of Kota stone slurry powder and accelerators in concrete

  • Devi, Kiran;Saini, Babita;Aggarwal, Paratibha
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.189-201
    • /
    • 2019
  • Recent advances in the concrete technology are aiding in minimizing the use of conventional materials by substituting by-products of various industries and energy sources. A large amount of stone waste i.e., dust and slurry form both are being originated during natural stone processing and causing deadily effects on the environment. The disposal problem of stone waste can be resolved effectively by using waste in construction industries. In present work, Kota stone slurry powder, as a substitution of cement was used along with accelerators namely calcium nitrate and triethanolamine as additives, to study their impact on various properties of the concrete mixtures. Kota stone slurry powder (7.5%), calcium nitrate (1%) and triethanolamine (0.05%) were used separately as well in combination in different concrete mixtures. Mechanical Strength, modulus of elasticity and electrical resistivity of concrete specimens of different mix proportions under water curing were studied experimentally. The durability properties in terms of strength and electrical resistivity against sulphate and chloride solution attack at various curing ages were also studied experimentally. Results showed that accelerators and Kota stone slurry powder separately enhanced the mechanical strength and electrical resistivity; but, their combination decreased strength at all curing ages. The durability of concrete specimens was also affected under the exposure to chemical attack too. Kota stone slurry powder found to be the most effective material among all materials. Material characterization was also done to study the microstructural properties.

Physical and Mechanical Properties of Permeable Polymer Concrete

  • Sung, Chan-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.44-50
    • /
    • 1997
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc.. This study was to explore a possibility of using stone dust and heavy calcium carbonate as fillers for the permeable polymer concrete. Different mixing pro-portions were tried to find an optimum mixing proportion of the permeable polymer concrete. The tests were carried out at 20 f 1 t and 60 ${\pm}$ 2% relative humidity. At 7 days of curing, compressive, flexural and splitting tensile strengths and water permeability ranged between 209~246kgf/cm$^2$, 101 ~ l2lkgf/cm$^2$, 36~52kgf/cm$^2$ and 3.076 ~ 4.390L/cm$^3\;^2$/hr, respectively. It was concluded that the stone dust and heavy calcium carbonate could be used in the permeable polymer concrete.

Properties of ECO-permeable Polymer Concrete (환경 친화형 투수성 폴리머 콘크리트의 특성)

  • Park, Fill-Woo;Youn, Joon-No;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.149-152
    • /
    • 2002
  • This study is performed to evaluate the properties of ECO-permeable polymer concrete with blast furnace slag powder and stone dust. The unit weight is in the range of $1,821kg/m^3{\sim}1,955kg/m^3$, the unit weights of those concrete are decreased $15%{\sim}20.8%$ than that of the normal cement concrete. The highest strength is achieved by ECO-permeable polymer concrete filled blast furnace slag powder 50% and stone dust 50%, it is increased 36% by compressive strength, 119% by tensile strength and 217% by bending strength than that of the normal cement concrete, respectively. The coefficient of permeability is in the range of $5.6{\times}10^{-2}cm/s{\sim}8.1{\times}10^{-2}cm/s$, and it is largely dependent upon the mix design.

  • PDF

Non-destruction Properties of Hwangtoh Mortar (황토모르터르의 비파괴 특성)

  • Youn, Joon-No;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.197-200
    • /
    • 2002
  • This study is performed to examine the non-destruction properties of the Hwangtoh mortar. The absorption ratio is in the range of $8.25%{\sim}18.16%$, it tend to increase with increase using the stone dust and Hwangtoh. The pulse velocity and dynamic modulus at the curing age 7 and 28days are in the range of $2,290m/s{\sim}4,140m/s,\;2,976m/s{\sim}4,219m/s\;and\;105{\times}10^3kgf/cm^2{\sim}293{\times}10^3kgf/cm^2,\;137{\times}10^3kgf/cm^2{\sim}318{\times}10^3kgf/cm^2$, respectively. They tend to decrease with increase using the stone dust and Hwangtoh.

  • PDF

Effects of SiO2 in Turkish Natural Stones on Cancer Development

  • Dal, Murat;Malak, Arzu Tuna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4883-4888
    • /
    • 2012
  • In materials science, one of the new concerns in the construction industry, it is well established that mineral dust from rocks (stones) has adverse effects on human health. For instance, it is suspected that some mineral dusts in particular leads to occupational diseases, including lung cancer. The present research concerned the relationship between cancer and those workers who work in Turkish construction industry and quarries and are exposed to silica mineral dust from natural stones. One focus was cancer prevention methods applied in-site. In mining and construction industry where stone dust is widely used, silicosis induced lung cancer is frequently seen. Cancer cases which are seen across the regions mostly affected by silica containing dust in Turkey were identified and a survey was conducted of the methods to protect workers in the construction industry from exposure to silica dust.

- Development of the multi axis whetstone system in the stone polishing process for the work environment improvement - (작업환경개선을 위한 석재연마공정에 있어서의 다축마석연마장치 개발)

  • Kang Ji Ho;Hong Dong Pyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.4
    • /
    • pp.171-181
    • /
    • 2004
  • A multi axis whetstone polishing system, which uses the flow system of the stone polishing machine head, has been developed. The test results show that the defect by line contact polishing does not occur in both ends of the stone and that it came to trim smoothly. In terms of the surface roughness, the corresponding index was decreased by 3.6 times, improving the polishing effect greatly. It decreased significantly the dust and noise with the wet polishing. The factors of the duty evasion at production site can thus be solved with the work environment improvement against the polishing process of the stone industry and work intensive reduction.

Development of the multi axis whetstone polishing system of the stone polishing process for the work environment improvement (작업환경개선을 위한 석재가공업 연마공정의 다축마석연마장치 개발)

  • Kang Ji-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.165-170
    • /
    • 2004
  • It used the flow system of the stone polishing machine head and it developed a multi axis whetstone polishing system. With the result, the defect by line contact polishing does not occur in both ends of the stone, and it came to trim smoothly. As the index of the surface roughness decreased to 3.6 times, the polishing effect improved greatly. It decreased greatly the dust and a noise with the wet polishing, and the factors of the duty evasion at production site were solved with the work environment improvement against the polishing process of the stone industry and work intensive reduction.

  • PDF

Engineering Properties of Permeable Polymer Concrete with CaCO3 and Stone Dust (CaCO3와 석분을 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan Yong;Song, Young Jin;Jung, Hyun Jung
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 1996
  • This study was performed to evaluate the engineering properties of permeable polymer concrete with fillers and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive, 148% by tensile and 188% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity was in the range of $1.17{\times}10^5{\sim}1.32{\times}10^5kg/cm^2$, which was approximately 53~56% of that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 3. The dynamic modulus of elasticity was in the range of $1.3{\times}10^5{\sim}1.5{\times}10^5kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 10~13% than that of the static modulus. 4. The water permeability was in the range of $3.076{\sim}4.390{\ell}/cm^2/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 5. The compressive strength, tensile strength, bending strength and elastic modulus were largely showed with the decrease of water permeability.

  • PDF

Recyling of Waste Materials for Iron Ore Sintering (제철소내 폐기물의 소결공정에서의 이용기술)

  • 문석민;이대열;정원섭;신형기
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.12-20
    • /
    • 1994
  • Difficulties lies on using the dust from iron making process as a raw material for sintering process mainly because of high amount of Zn or alkali content and its ultra fine characteristics. To eliminate these toxic influence, new fluxing materials were tested and could get a very successful results. This fluxing materials, Calcium-ferrite of magnesio-ferrite were made from various waste materials such as lime stone sludge, bag filter dust, waste EP dust and dolomite sludge by simple way of pre-sintering. Sintering behavior as a fluxing materials was revealed to be good in any aspects and new concept of total recycling system could be established.

  • PDF