• Title/Summary/Keyword: stoichiometric analysis

Search Result 163, Processing Time 0.018 seconds

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (I) - Fundamental Characteristics - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (I) - 기초 특성 -)

  • Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.733-741
    • /
    • 2013
  • This is the first paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the fundamental characteristics of fuel from the viewpoint of thermochemistry and thermodynamics and compares these results with experimental ones. The results show that the final pressures obtained from theoretical analysis vary under the same heating value owing to the change in the constant volume specific heat owing to the difference in the burned gas composition according to the fuel gas compositions; furthermore, the stoichiometric ratios and trends of analytical and experimental pressures coincide very well, although some minor differences are observed between the two. The root cause of the difference is the heat transfer, which changes the specific heat and lowers the temperature considerably, in the real combustion process. In addition, the large chamber volume and ignition position promote the heat transfer to the wall. Finally, the fuel conversion efficiency increases as the methane mol fraction decreases, and it is maximum when the stoichiometric ratio ranges from 0.8 to 0.9. These increases due to the composition and stoichiometric ratio could sufficiently compensate the decrease due to the specific heat ratio drop, LFG might be more advantageous than pure methane in a real engine.

Study on Effective Visual Resources According to Their Role in Teaching-Learning Activity - In the “Regularity in Chemical Reactions” Unit in the Ninth Grade Science Textbook

  • Park, Jong Keun
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.327-341
    • /
    • 2016
  • This study explores the effective visual resources in the “regularity in chemical reactions” unit of ninth grade science textbooks (2009 revised version). The frequency and role of visual resources were initially examined, and the students’ perceptions of visual resources were investigated. The results of the analysis represented the learning material presentation (68%), motivational categories (14%), guide to inquiry procedures (9%), and inquiry results and summaries (8%). According to the investigation of the students’ perceptions of visual resources, the most effective visual resource for motivation is a photograph depicting physical and chemical changes, such as in bread baking and the most effective for learning material presentations in mass conservation, definite proportion, and stoichiometric concept units were a cartoon, graph, and formula representing stoichiometric phenomena, respectively. The most effective resource for guide to inquiry (experimental) procedures were photographs of both instruments and sequential experiment processes; and in the inquiry results and summary category, incomplete tables and graphs for students to work on themselves. The aims of this research are to increase the usefulness of visual resources in the teaching-learning activity and provide informative supplements for the development and improvement of visual resources, according to the students’ perceptions.

Calculation of thermodynamical equilibrium composition of combustion gases (燃燒氣體의 熱力學的 平衡組成計算에 관한 硏究)

  • 허병기;이청종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.177-188
    • /
    • 1987
  • A compute program based on the minimization of total Gibbs' free energy and enthalpy balance was developed to calculate the chemical equilibrium composition and adiabatic flame temperature, especially stressed on NO and CO concentration of Heavy oil. Twenty four components of combustion gases which would be produced from the combustion of Heavy oil were chosen and utilized for the products composition analysis of competing combustion reaction. As the results, following conclusions were turned out; (1) Maximum adiabatic flame temperature was found around to be 2900K, when the stoichiometric air ratio was 0.8. (2) Maximum NO quantity in adiabatic process was occurred when supplied air quantity was around 120% of theoretical air requirement. (3) NO and CO quantities were increased with combustion gas temperature at constant stoichiometric air ratio. (4) At constant temperature of combustion gas, NO quantity was increased and Co quantity was decreased with supplied air quantity.

CO Emission Characteristics in the Interacting Counterflow Methane and Hydrogen Partially Premixed Flames (상호작용하는 대향류 메탄-수소 부분예혼합화염의 CO 배출특성)

  • Park, Ji-Woong;Oh, Chang Bo;Kim, Tae-Hyung;Park, Jongho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • The CO emission characteristics of interacting hydrogen and methane partially premixed flames were numerically investigated. A counterflow geometry was introduced to establish interacting two partially premixed flames. An one-dimensional OPPDIF code was used to simulate the interacting flames. The GRI-v3.0 was used to calculate the chemical reactions. Emission index for CO(EICO) was evaluated to quantify the CO emitted from the interacting flames. The global strain rate and equivalence ratios for each flame(${\Phi}_{CH_4}$ and ${\Phi}_{H_2}$) were used as parameters to control the extent of interaction between two partially premixed flames. When ${\Phi}_{CH_4}$ was kept to stoichiometric condition and ${\Phi}_{H_2}$ was at rich condition, unburned H2 species of hydrogen flame was transported to the methane flame and affected reactions related with CO formation. When ${\Phi}_{CH_4}$ increased from a stoichiometry to rich condition while ${\Phi}_{H_2}$ was kept to stoichiometric condition, EICO increased initially, had a peak value at ${\Phi}_{CH_4}=1.5$ and decreased gradually. This could be elucidated with an analysis for the elementary reactions related with CO formation.

Characteristics of Laminar Lifted Flames in Coflow Jet with Various Coflow Velocities (동축류 제트에서 동축류 속도에 따른 층류 부상화염의 특성 연구)

  • Lee, S.J.;Kim, K.N.;Won, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.21-26
    • /
    • 2004
  • Characteristics of laminar lifted names in coflow jet with various coflow velocities have been studied experimently. USlI1g the fuel nozzle with d=0.254 for the pure propane, liftoff heights are fitted by using power equation with jet velocity. As coflow velocity increases up to 60 cm/s powers of fitting equation steeply decrease. From the result of numerical analysis using the FLUENT, the stoichiometry contour and the axial velocity nondimensionalized by initial jet velocity along the stoichiometry contour are changed with variations of coflow velocities, The change of axial velocity along stoichiometric contour is more sensitive than that of stoichiometric contour, For this reason, powers of fitting equation for liftoff height with jet velocity decreases with the increase of coflow velocity. Using the fuel nozzle with d=4,35 mm for the highly diluted propane by nitrogen, the liftoff height increases with the increase of coflow velocity when coflow velocity is less than the maximum value of initial jet velocity. But when coflow velocity is faster than that, the liftoff height decreases with the increase of coflow velocity.

  • PDF

Laminar Burning Velocities and Flame Stability Analysis of Hydrocarbon/Hydrogen/Carbon Monoxide-air Premixed Flames (탄화수소/수소/일산화탄소-공기의 예혼합화염에서 층류화염전파속도와 화염안정성)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.23-32
    • /
    • 2011
  • To investigate cell formation in hydrocarbon/hydrogen/carbon monoxide-air premixed flames, the outward propagation and cellular instabilities were experimentally studied in a constant pressure combustion chamber at room temperature and elevated pressures. Unstretched laminar burning velocities and Markstein lengths of the mixtures were obtained by analyzing high-speed schlieren images. In this study, hydrodynamic and diffusional- thermal instabilities were evaluated to examine their effects on flame instabilities. The experimentally-measured unstretched laminar burning velocities were compared to numerical predictions using the PREMIX code. Effective Lewis numbers of premixed flames with methane addition decreased for all of the cases; meanwhile, effective Lewis numbers with propane addition increased for lean and stoichiometric conditions and increased for rich and stoichiometric cases for hydrogen-enriched flames. With the addition of propane, the propensity for cell formation significantly was diminished, whereas cellular instabilities for hydrogen-enriched flames were promoted. However, similar behavior of cellularity was obtained with the addition of methane to the reactant mixtures.

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Analysis of Energy Losses in a Natural Gas Spark Ignition Engine for Power Generation (천연가스 스파크점화 엔진 발전기에서의 에너지 손실 분석)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yongkyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.170-177
    • /
    • 2020
  • Stoichiometric combustion in spark ignition (SI) engines has an advantage of meeting future stringent emission regulations. However, the drawback of the combustion is a lower thermal efficiency than that of lean burn. In this study, energy losses in a natural gas stoichiometric SI engine generator were analyzed to establish a strategy for improving the generating efficiency (GE). The energy losses were investigated based on dynamometer and load bank experiments. As the intake manifold pressure increased in the dynamometer experiment, the brake thermal efficiency (BTE) increased mainly due to the reduction in the pumping and mechanical losses. In the load bank experiment, the generating power and GE increased with the increased intake manifold pressure. The generating power and GE were lower than the brake power and BTE due to the cooling fan power and the losses in the generator.

Determination of stoichiometric Ca/P ratio in biphasic calcium phosphates using X-ray diffraction analysis (X-선 회절분석을 이용한 biphasic calcium phosphate 분말의 화학양론적 Ca/P 비율 확인)

  • Song, Yong-Keun;Kim, Dong-Hyun;Kim, Tae-Wan;Kim, Yang-Do;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2010
  • The calcium to phosphate ratio (Ca/P) in biphasic calcium phosphates powders using X-ray diffraction analysis (XRD) was characterized. The BCP powders with various stoichiometric Ca/P molar ratio were synthesized with coprecipitation process and calcination. Compositions of the powders with Ca/P molar ratio between 1.5 and 1.67 were subjected to starting Ca/P molar ratio, pH = 10, and thermal treatment up to $900^{\circ}C$. The structural, morphological and chemical characterizations for BCP powders with stoichiometric Ca/P ratio were carried out with scanning electron microscope (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) and a phase quantification was investigated by XRD. The solubility of HAp, $\beta$-TCP, and BCP powders was tested in the phosphate buffer solution (PBS) at $36.5^{\circ}C$ and pH = 7.4.

Application of stoichiometric method in the assessment of groundwater chemistry in a coastal region having complex contaminant sources

  • Rajmohan Natarajan;Kim, Kang-Joo;Hwang, Gab-Soo;Kim, Hyun-Jung;Cho, Min-Joe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.499-502
    • /
    • 2004
  • Groundwater chemistry in a coastal region having complex contaminant sources was investigated. Water analysis data for 197 groundwater samples collected from the uniformly distributed sixty-six wells were used. Chemical analysis rand results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes of pollutants. Due to the complexity of groundwater chemistry, Results illustrate that thirty five percent of the wells do not fit for drinking based on nitrate and chloride concentration in the study area. the samples were classified into four groups based on Cl and NO$_3$ concentrations and the processes controlling water chemistry were evaluated based on the reaction stoichiometry. The results explained the importance of mineral weathering, anthropogenic activities (nitrification and oxidation of organic matters), and Cl-salt inputs (seawater, deicer, NaCl, etc.) on groundwater chemistry. It was revealed that mineral dissolution is the major process controlling the water chemistry of the low Cl and NO$_3$ group (Group 1). Groundwaters high in NO$_3$ (Groups 2 and 4) are acidic in nature, and their chemistry is largely influenced by nitrification, oxidation of organic matters and mineral dissolution. In the case of chloride rich waters (Group 3), groundwater chemistry is highly influenced by mineral weathering and seawater intrusion associated with cation-exchange reactions.

  • PDF