• Title/Summary/Keyword: stock prices data

Search Result 201, Processing Time 0.026 seconds

High-dimensional change point detection using MOSUM-based sparse projection (MOSUM 성근 프로젝션을 이용한 고차원 시계열의 변화점 추정)

  • Kim, Moonjung;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • This paper proposes the so-called MOSUM-based sparse projection method for change points detection in high-dimensional time series. Our method is inspired by Wang and Samworth (2018), however, our method improves their method in two ways. One is to find change points all at once, so it minimizes sequential error. The other is localized so that more robust to the mean changes offsetting each other. We also propose data-driven threshold selection using block wild bootstrap. A comprehensive simulation study shows that our method performs reasonably well in finite samples. We also illustrate our method to stock prices consisting of S&P 500 index, and found four change points in recent 6 years.

Temporal Fusion Transformers and Deep Learning Methods for Multi-Horizon Time Series Forecasting (Temporal Fusion Transformers와 심층 학습 방법을 사용한 다층 수평 시계열 데이터 분석)

  • Kim, InKyung;Kim, DaeHee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Given that time series are used in various fields, such as finance, IoT, and manufacturing, data analytical methods for accurate time-series forecasting can serve to increase operational efficiency. Among time-series analysis methods, multi-horizon forecasting provides a better understanding of data because it can extract meaningful statistics and other characteristics of the entire time-series. Furthermore, time-series data with exogenous information can be accurately predicted by using multi-horizon forecasting methods. However, traditional deep learning-based models for time-series do not account for the heterogeneity of inputs. We proposed an improved time-series predicting method, called the temporal fusion transformer method, which combines multi-horizon forecasting with interpretable insights into temporal dynamics. Various real-world data such as stock prices, fine dust concentrates and electricity consumption were considered in experiments. Experimental results showed that our temporal fusion transformer method has better time-series forecasting performance than existing models.

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.

Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction (팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링)

  • Sungho Bae;Myungsun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2024
  • This study develops a deep learning-based methodology for predicting Crude Palm Oil (CPO) prices. Palm oil is an essential resource across various industries due to its yield and economic efficiency, leading to increased industrial interest in its price volatility. While numerous studies have been conducted on palm oil price prediction, most rely on time series forecasting, which has inherent accuracy limitations. To address the main limitation of traditional methods-the absence of stationarity-this research introduces a novel model that uses the ratio of future prices to current prices as the dependent variable. This approach, inspired by return modeling in stock price predictions, demonstrates superior performance over simple price prediction. Additionally, the methodology incorporates the consideration of lag values of independent variables, a critical factor in multivariate time series forecasting, to eliminate unnecessary noise and enhance the stability of the prediction model. This research not only significantly improves the accuracy of palm oil price prediction but also offers an applicable approach for other economic forecasting issues where time series data is crucial, providing substantial value to the industry.

A Modeling Methodology for Analysis of Dynamic Systems Using Heuristic Search and Design of Interface for CRM (휴리스틱 탐색을 통한 동적시스템 분석을 위한 모델링 방법과 CRM 위한 인터페이스 설계)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • Most real world systems contain a series of dynamic and complex phenomena. One of common methods to understand these systems is to build a model and analyze the behavior of them. A two-step methodology comprised of clustering and then model creation is proposed for the analysis on time series data. An interface is designed for CRM(Customer Relationship Management) that provides user with 1:1 customized information using system modeling. It was confirmed from experiments that better clustering would be derived from model based approach than similarity based one. Clustering is followed by model creation over the clustered groups, by which future direction of time series data movement could be predicted. The effectiveness of the method was validated by checking how similarly predicted values from the models move together with real data such as stock prices.

The Informativeness of Cash Flows and Earnings (현금흐름과 이익의 정보성)

  • Pyo, Young-In
    • Korean Business Review
    • /
    • v.11
    • /
    • pp.241-253
    • /
    • 1998
  • One form of the anomalies of stock price changes as reaction to earnings information is believed to be caused by the so-called earnings fixation, which is the overreaction of stock prices to earnings. According to the Sloan (1996) study, stock price changes are positively associated with earnings at the time of earnings releases, but the association becomes negative after that, as the early overreaction is corrected. However, the problem in his study is to use cash flows computed by adjusting earnings with appropriate income statement and balance sheet items. As Bahnson et al. (1996) show, these cash flows substantially deviate from SFAS No. 95 cash flows and the sample used in this study is found to be subject to this substantial measurement error. Therefore, the result of Sloan might be driven by this error and the reexamination of earnings fixation is warranted. The results are generally consistent with those in Sloan. First, earnings is positively associated with stock price changes at the time of earnings releases, but the association becomes negative after that. Second, cash flows show a weak association with stock price changes at the time of earnings releases, but the association become stronger thereafter. Third, when seperated from cash flows, accruals have an incremental explanation about stock price changes beyond that of cash flows, accruals have a negative association later on. This finding is consistent with stock price overreaction to accruals, even when more cleaner cash flow data are used.

  • PDF

A Study on Resolving Barriers to Entry into the Resell Market by Exploring and Predicting Price Increases Using the XGBoost Model (XGBoost 모형을 활용한 가격 상승 요인 탐색 및 예측을 통한 리셀 시장 진입 장벽 해소에 관한 연구)

  • Yoon, HyunSeop;Kang, Juyoung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.155-174
    • /
    • 2021
  • This study noted the emergence of the Resell investment within the fashion market, among emerging investment techniques. Worldwide, the market size is growing rapidly, and currently, there is a craze taking place throughout Korea. Therefore, we would like to use shoe data from StockX, the representative site of Resell, to present basic guidelines to consumers and to break down barriers to entry into the Resell market. Moreover, it showed the current status of the Resell craze, which was based on information from various media outlets, and then presented the current status and research model of the Resell market through prior research. Raw data was collected and analyzed using the XGBoost algorithm and the Prophet model. Analysis showed that the factors that affect the Resell market were identified, and the shoes suitable for the Resell market were also identified. Furthermore, historical data on shoes allowed us to predict future prices, thereby predicting future profitability. Through this study, the market will allow unfamiliar consumers to actively participate in the market with the given information. It also provides a variety of vital information regarding Resell investments, thus. forming a fundamental guideline for the market and further contributing to addressing entry barriers.

Effect of Korean Service Quality Awards on the Market Value by using Event Study Methodology (한국의 서비스 품질상 수상이 기업가치에 미치는 영향 : 사건연구방법론적 접근)

  • Oh, Byoung-Sub;Park, Ji-Young;Chung, Soong-Hwan;Choi, Kang-Hwa
    • Korean Management Science Review
    • /
    • v.27 no.3
    • /
    • pp.161-196
    • /
    • 2010
  • This paper empirically investigates the impact of winning a service quality award on the market value in Korea. We estimates the mean "abnormal" change in the stock prices of sample firms when information of winning a service quality award was publicly announced. To access the validity of the research question, this paper employed collected 47 firms data that received the Korean Service Quality Awards so far. Event study methodology was used to analyze the effect of Korean service quality awards. The findings are as follows; The average abnormal returns on the event date are not significant at the 0.05 level which means that the receiving Korean Service Quality Awards has no influence on the firms' market value. On the other hand successive awarded firms have an increasing effect on the market value and it is significant at the 0.05 level. Furthermore, the results show that the factors of firm size such as firm's total assets are critical to vary the firms' abnormal returns. There might be some limitations in this study. The most obvious problem is the limitation of sample size. Although 518 sample cases were found during the period from 2000 to 2008, most of the cases were deleted according to the sample criteria. We are expecting the future research with more data and more precise results. Furthermore, our research consider the only two service award institutions even though there are several different service award authorities in Korea. It is needed to expand the research scope and range to adopt the various service award institutions for the future work.

A Study of Short-term Won/Doller Exchange rate Prediction Model using Hidden Markov Model (은닉마아코프모델을 이용한 단기 원/달러 환율예측 모형 연구)

  • Jeon, Jin-Ho;Kim, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.229-235
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

A Study of Exchange rate Prediction Model using Model-based (모델기반 방법론을 이용한 환율예측 모형 연구)

  • Jeon, Jin-Ho;Moon, Seok-Hwan;Lee, Chae-Rin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.547-549
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

  • PDF