• 제목/요약/키워드: stock price index

검색결과 276건 처리시간 0.02초

인공신경망을 이용한 한국 종합주가지수의 방향성 예측 (Predicting Korea Composite Stock Price Index Movement Using Artificial Neural Network)

  • 박종엽;한인구
    • 지능정보연구
    • /
    • 제1권2호
    • /
    • pp.103-121
    • /
    • 1995
  • This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.

  • PDF

Dynamic Relationship between Stock Prices and Exchange Rates: Evidence from Nepal

  • Kim, Do-Hyun;Subedi, Shyam;Chung, Sang-Kuck
    • 국제지역연구
    • /
    • 제20권3호
    • /
    • pp.123-144
    • /
    • 2016
  • This paper investigates the linkages between returns both in foreign exchange and stock markets, and uncertainties in two markets using daily data for the period of 16 July 2004 to 30 June 2014 in Nepalese economy. Four hypotheses are tested about how uncertainty influences the stock index and exchange rates. From the empirical results, a bivariate EGARCH-M model is the best to explain the volatility in the two markets. There is a negative relationship from the exchange rates return to stock price return. Empirical results do provide strong empirical confirmation that negative effect of stock index uncertainty and positive effect of exchange rates uncertainty on average stock index. GARCH-in-mean variables in AR modeling are significant and shows that there is positive effect of exchange rates uncertainty and negative effect of stock index uncertainty on average exchange rates. Stock index shocks have longer lived effects on uncertainty in the stock market than exchange rates shock have on uncertainly in the foreign exchange market. The effect of the last period's shock, volatility is more sensitive to its own lagged values.

패널 데이터모형을 이용한 지역별 취업자 수 결정요인 추정에 관한 연구 (Estimating the Determinants for employment number by areas : A Panel Data Model Approach)

  • 이현주;김희철
    • 디지털산업정보학회논문지
    • /
    • 제6권4호
    • /
    • pp.297-305
    • /
    • 2010
  • Employment number by areas is composed of various factors for groups and time series. In this paper, we use the panel data for finding various variables and using this, we analyzed the factors that is major influence to employment number by areas. For analysis we looked at employment number by areas, the region for analysis consist of seven groups, that is, the metropolitan city(such as Busan, Daegu, Incheon, Gwangiu, Daejeon, Ulsan.) and Seoul. Analyzing period be formed over a 63 time points(2005.01.- 2010.03). We examined the data in relation to the employment number by occupational job, unemployment rate, monthly household income, preceding business composite index, consumer price index, composite stock price index. In looking at the factors which determine employment number by areas job, evidence was produced supporting the hypothesis that there is a significant negative relationship between unemployment rate and monthly household income the consumer price index. The consumer price index and composite stock price index are significant positive relationship, preceding business composite index is positive relationship, it are not significant variables in terms of employment number by areas job.

심층 신경회로망 모델을 이용한 일별 주가 예측 (Daily Stock Price Forecasting Using Deep Neural Network Model)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제9권6호
    • /
    • pp.39-44
    • /
    • 2018
  • 심층 신경회로망은 적합한 수학적 모델에 대한 어떠한 가정 없이 데이터로부터 유용한 정보를 추출해서 예측에 필요한 입출력 관계를 정의할 수 있기 때문에 최근 시계열 예측 분야에서 주목 받고 있다. 본 논문에서는 주가의 일별 종가를 예측하기 위한 심층 신경회로망 모델을 제안한다. 제안된 심층 신경회로망은 예측 정밀도를 높이기 위해 단일 층의 오토인코더와 4층의 신경회로망이 결합된 구조를 갖는다. 오토인코더 층은 주가 예측에 필요한 최적의 입력 특징을 추출하고 4층의 신경회로망은 추출된 특징을 사용해 주가 예측에 필요한 동특성을 반영하여 주가를 출력한다. 제안된 심층 신경회로망의 학습은 층별로 단계적으로 이뤄지며 최종 단계에서 전체 심층 신경회로망에 대해 한 번 더 학습이 실행된다. 본 논문에 제안된 방법으로 KOrea composite Stock Price Index (KOSPI) 일별 종가를 예측하는 심층 신경회로망을 구현하고 기존 방법과 예측 정확도를 비교, 평가한다.

분위수회귀분석을 이용한 유가 변동성에 대한 산업별 주식시장의 이질적 반응 분석 (Asymmetric Impacts of Oil Price Uncertainty on Industrial Stock Market -A Quantile Regression Approach -)

  • 주영찬;박성용
    • 경영과정보연구
    • /
    • 제38권3호
    • /
    • pp.1-19
    • /
    • 2019
  • 이 연구에서는 시장의 상황에 따라 이질적으로 나타나는 유가변동성지수(Oil Volatility Index : OVX)가 주식시장에 미치는 효과를 분위수회귀모형을 이용하여 분석하였다. 특히 전체적인 주식시장뿐만 아니라 산업별로 상이하게 나타나는 효과를 분석하기 위하여 2007년 5월부터 2019년 2월까지의 종합주가지수(KOSPI)와 함께 22개 산업별 주가지수 수익률을 사용하였다. 이와 함께 유가변동성지수의 변화율이 증가하는 경우와 감소하는 경우를 구분하여 강세와 약세 시장에서 산업별 주가지수에 미치는 영향을 분석하였다. 그 결과, 각 산업별 주식시장이 약세일 때 유가변동성지수가 미치는 음의 효과가 상대적으로 강하게 나타났으며, 이러한 효과는 강세시장으로 갈수록 사라지는 것을 확인할 수 있었다. 또한 해당 산업의 주식시장이 약세일 때 유가변동성의 증가는 12개 산업에서 통계적으로 유의한 강한 음의 효과를 주는 것으로 나타났으며, 이와는 달리 강세 시장에서는 섬유의복, 기계, 서비스업에서 통계적으로 유의한 양의 효과를 주는 것으로 나타났다. 특히 강세 시장에서 유가변동성 증가가 감소하는 경우 제조업을 포함한 12개 산업에서 주가 수익률에 통계적으로 유의한 음의 효과를 주는 것으로 나타났다. 결과를 통하여 부정적인 소식에 상대적으로 더욱 민감하게 반응하는 주식시장의 특징이 약세시장에서 더욱 명확하게 나타난다는 것을 확인하였다.

Stock prediction using combination of BERT sentiment Analysis and Macro economy index

  • Jang, Euna;Choi, HoeRyeon;Lee, HongChul
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.47-56
    • /
    • 2020
  • 주가지수는 한 국가의 경제 지표뿐만 아니라 투자판단의 지표로도 활용되므로 이를 예측하는 연구가 지속해서 진행되고 있다. 주가지수 예측을 하는 작업은 기술적, 경제적 및 심리적 요인 등이 반영된 것으로 예측의 정확도를 위해서는 복합적 요인을 고려해야 한다. 따라서 지수의 변동에 영향을 미치는 요인들을 선별하여 반영한 주가지수 예측모델연구가 필요하다. 이와 관련한 기존 연구에서는 시장의 변동을 만들어 내는 뉴스 정보 또는 거시 경제 지표를 각각 이용하거나, 몇 가지의 지표 조합만을 반영한 예측 연구가 대부분이었다. 따라서 본 연구에서는 미국 다우존스지수 예측을 위해 뉴스 정보의 감성 분석과 다양한 거시경제지표를 고려하여 효과적인 지표 조합을 제시하고자 한다. 뉴스 정보의 감성 분석은 최신 자연어처리 기법인 BERT와 NLTK VADER를 사용하고, 예측모델은 주가예측모델로 적합하다고 알려진 딥러닝 예측모델 LSTM을 적용하여 가장 효과적인 지표 조합을 제시했다.

아파트매매가격지수와 거시경제변수에 관한 시계열모형 연구 (Time series models on trading price index of apartment and some macroeconomic variables)

  • 이훈자
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1471-1479
    • /
    • 2017
  • 아파트매매 가격지수의 변동은 국가의 경제뿐만 아니라 사회, 산업, 문화 등의 전 분야에 영향을 준다. 본 연구에서는 아파트매매 가격지수를 거시경제변수로 설명하는 시계열모형을 연구하고자 한다. 설명변수로 사용한 거시경제변수는 우리나라 주택담보 대출금리, 원유수입 물가지수, 소비자 물가지수, KOSPI 주가지수, 국내총생산 (GDP), 국민총소득 (GKI)의 6가지 변수를 사용하였다. 아파트매매 가격지수와 모든 경제변수는 2001년 9월부터 2017년 5월까지 약 16년간의 월별 자료를 사용하였다. 아파트매매 가격지수 자료의 설명을 위해 시계열 모형 중 자기회귀오차 (ARE) 모형을 사용하여 분석하였다. ARE 모형 분석 결과 아파트매매 가격지수는 1개월 전 아파트매매 가격지수, 주택담보 대출금리와 KOSPI 주가지수에 의해 영향을 받는 것으로 나타났다.

온라인 뉴스와 거시경제 지표, 금융 지표, 기술적 지표, 관심도 지표를 이용한 코스닥 상장 기업의 기계학습 기반 주가 변동 예측 (Machine Learning Based Stock Price Fluctuation Prediction Models of KOSDAQ-listed Companies Using Online News, Macroeconomic Indicators, Financial Market Indicators, Technical Indicators, and Social Interest Indicators)

  • 김화련;홍승혜;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.448-459
    • /
    • 2021
  • In this paper, we propose a method of predicting the next-day stock price fluctuations of 10 KOSDAQ-listed companies in 5G, autonomous driving, and electricity sectors by training SVM, XGBoost, and LightGBM models from macroeconomic·financial market indicators, technical indicators, social interest indicators, and daily positive indices extracted from online news. In the three experiments to find out the usefulness of social interest indicators and daily positive indices, the average accuracy improved when each indicator and index was added to the models. In addition, when feature selection was performed to analyze the superiority of the extracted features, the average importance ranking of the social interest indicator and daily positive index was 5.45 and 1.08, respectively, it showed higher importance than the macroeconomic financial market indicators and technical indicators. With the results of these experiments, we confirmed the effectiveness of the social interest indicators as alternative data and the daily positive index for predicting stock price fluctuation.

주가 운동양태 예측을 위한 예측 모델결정에 관한 연구 (A Study on Determining the Prediction Models for Predicting Stock Price Movement)

  • 전진호;조영희;이계성
    • 한국콘텐츠학회논문지
    • /
    • 제6권6호
    • /
    • pp.26-32
    • /
    • 2006
  • 주식투자의 대중화, 관심의 증가에 따라 주가예측의 중요성이 증대되고 있다. 주가의 변화는 어떤 경향이나 패턴에 의해 움직인다고 가정할 때, 과거의 주가분석을 통해 이들의 변화를 잘 설명할 수 있는 모델의 구성이 가능할 것이다. 동적인 현상을 반영하는 최적의 모델이 구성된다면 이를 통해 향후의 일정기간의 주가의 운동양태의 예측이 가능할 것이다. 본 연구에서는 주가와 같은 템포랄(temporal) 데이터를 잘 설명할 수 있는 모델결정에 대한 방법론으로서 오토마타 기반의 모델을 가정한다. 모델의 최적 상태 수를 결정하기 위한 기준으로서 베이지안정보기준(BIC : Bayesian Information Criterion) 근사법을 사용한다. 베이지안정보기준의 유효성을 살펴보고 베이지안정보기준을 실제 주가데이터 모델의 상태 수 결정과정에 적용하여 모델을 생성한 후 결정된 모델을 통하여 일정 기간의 일별주가곡선의 운동양태를 예측한다. 실제의 주가곡선에 적용하여 모델의 유효성을 확인하였고 예측 주가곡선의 운동양태가 실제 주가 곡선과 유사함을 확인하였다.

  • PDF

자기연상 학습 신경망과 부호 입력 변수를 이용한 종합주가지수 "왼쪽어깨" 패턴 검출 (“Left Shoulder”Detection in Korea Composite Stock Price Index Using an Auto-Associative Neural Network and Sign Variables)

  • 백진우;조성준
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.29-32
    • /
    • 2000
  • We proposed a neural network based “left shoulder”detector. The auto-associative neural network was trained with the “left shoulder”patterns obtained from the Korea Composite Stock Price Index, and then tested out-of-sample with a reasonably good result. A hypothetical investment strategy based on the detector achieved a return of 132% in comparison with 39% return from a buy and hold strategy

  • PDF