This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.
This paper investigates the linkages between returns both in foreign exchange and stock markets, and uncertainties in two markets using daily data for the period of 16 July 2004 to 30 June 2014 in Nepalese economy. Four hypotheses are tested about how uncertainty influences the stock index and exchange rates. From the empirical results, a bivariate EGARCH-M model is the best to explain the volatility in the two markets. There is a negative relationship from the exchange rates return to stock price return. Empirical results do provide strong empirical confirmation that negative effect of stock index uncertainty and positive effect of exchange rates uncertainty on average stock index. GARCH-in-mean variables in AR modeling are significant and shows that there is positive effect of exchange rates uncertainty and negative effect of stock index uncertainty on average exchange rates. Stock index shocks have longer lived effects on uncertainty in the stock market than exchange rates shock have on uncertainly in the foreign exchange market. The effect of the last period's shock, volatility is more sensitive to its own lagged values.
Employment number by areas is composed of various factors for groups and time series. In this paper, we use the panel data for finding various variables and using this, we analyzed the factors that is major influence to employment number by areas. For analysis we looked at employment number by areas, the region for analysis consist of seven groups, that is, the metropolitan city(such as Busan, Daegu, Incheon, Gwangiu, Daejeon, Ulsan.) and Seoul. Analyzing period be formed over a 63 time points(2005.01.- 2010.03). We examined the data in relation to the employment number by occupational job, unemployment rate, monthly household income, preceding business composite index, consumer price index, composite stock price index. In looking at the factors which determine employment number by areas job, evidence was produced supporting the hypothesis that there is a significant negative relationship between unemployment rate and monthly household income the consumer price index. The consumer price index and composite stock price index are significant positive relationship, preceding business composite index is positive relationship, it are not significant variables in terms of employment number by areas job.
심층 신경회로망은 적합한 수학적 모델에 대한 어떠한 가정 없이 데이터로부터 유용한 정보를 추출해서 예측에 필요한 입출력 관계를 정의할 수 있기 때문에 최근 시계열 예측 분야에서 주목 받고 있다. 본 논문에서는 주가의 일별 종가를 예측하기 위한 심층 신경회로망 모델을 제안한다. 제안된 심층 신경회로망은 예측 정밀도를 높이기 위해 단일 층의 오토인코더와 4층의 신경회로망이 결합된 구조를 갖는다. 오토인코더 층은 주가 예측에 필요한 최적의 입력 특징을 추출하고 4층의 신경회로망은 추출된 특징을 사용해 주가 예측에 필요한 동특성을 반영하여 주가를 출력한다. 제안된 심층 신경회로망의 학습은 층별로 단계적으로 이뤄지며 최종 단계에서 전체 심층 신경회로망에 대해 한 번 더 학습이 실행된다. 본 논문에 제안된 방법으로 KOrea composite Stock Price Index (KOSPI) 일별 종가를 예측하는 심층 신경회로망을 구현하고 기존 방법과 예측 정확도를 비교, 평가한다.
이 연구에서는 시장의 상황에 따라 이질적으로 나타나는 유가변동성지수(Oil Volatility Index : OVX)가 주식시장에 미치는 효과를 분위수회귀모형을 이용하여 분석하였다. 특히 전체적인 주식시장뿐만 아니라 산업별로 상이하게 나타나는 효과를 분석하기 위하여 2007년 5월부터 2019년 2월까지의 종합주가지수(KOSPI)와 함께 22개 산업별 주가지수 수익률을 사용하였다. 이와 함께 유가변동성지수의 변화율이 증가하는 경우와 감소하는 경우를 구분하여 강세와 약세 시장에서 산업별 주가지수에 미치는 영향을 분석하였다. 그 결과, 각 산업별 주식시장이 약세일 때 유가변동성지수가 미치는 음의 효과가 상대적으로 강하게 나타났으며, 이러한 효과는 강세시장으로 갈수록 사라지는 것을 확인할 수 있었다. 또한 해당 산업의 주식시장이 약세일 때 유가변동성의 증가는 12개 산업에서 통계적으로 유의한 강한 음의 효과를 주는 것으로 나타났으며, 이와는 달리 강세 시장에서는 섬유의복, 기계, 서비스업에서 통계적으로 유의한 양의 효과를 주는 것으로 나타났다. 특히 강세 시장에서 유가변동성 증가가 감소하는 경우 제조업을 포함한 12개 산업에서 주가 수익률에 통계적으로 유의한 음의 효과를 주는 것으로 나타났다. 결과를 통하여 부정적인 소식에 상대적으로 더욱 민감하게 반응하는 주식시장의 특징이 약세시장에서 더욱 명확하게 나타난다는 것을 확인하였다.
주가지수는 한 국가의 경제 지표뿐만 아니라 투자판단의 지표로도 활용되므로 이를 예측하는 연구가 지속해서 진행되고 있다. 주가지수 예측을 하는 작업은 기술적, 경제적 및 심리적 요인 등이 반영된 것으로 예측의 정확도를 위해서는 복합적 요인을 고려해야 한다. 따라서 지수의 변동에 영향을 미치는 요인들을 선별하여 반영한 주가지수 예측모델연구가 필요하다. 이와 관련한 기존 연구에서는 시장의 변동을 만들어 내는 뉴스 정보 또는 거시 경제 지표를 각각 이용하거나, 몇 가지의 지표 조합만을 반영한 예측 연구가 대부분이었다. 따라서 본 연구에서는 미국 다우존스지수 예측을 위해 뉴스 정보의 감성 분석과 다양한 거시경제지표를 고려하여 효과적인 지표 조합을 제시하고자 한다. 뉴스 정보의 감성 분석은 최신 자연어처리 기법인 BERT와 NLTK VADER를 사용하고, 예측모델은 주가예측모델로 적합하다고 알려진 딥러닝 예측모델 LSTM을 적용하여 가장 효과적인 지표 조합을 제시했다.
Journal of the Korean Data and Information Science Society
/
제28권6호
/
pp.1471-1479
/
2017
아파트매매 가격지수의 변동은 국가의 경제뿐만 아니라 사회, 산업, 문화 등의 전 분야에 영향을 준다. 본 연구에서는 아파트매매 가격지수를 거시경제변수로 설명하는 시계열모형을 연구하고자 한다. 설명변수로 사용한 거시경제변수는 우리나라 주택담보 대출금리, 원유수입 물가지수, 소비자 물가지수, KOSPI 주가지수, 국내총생산 (GDP), 국민총소득 (GKI)의 6가지 변수를 사용하였다. 아파트매매 가격지수와 모든 경제변수는 2001년 9월부터 2017년 5월까지 약 16년간의 월별 자료를 사용하였다. 아파트매매 가격지수 자료의 설명을 위해 시계열 모형 중 자기회귀오차 (ARE) 모형을 사용하여 분석하였다. ARE 모형 분석 결과 아파트매매 가격지수는 1개월 전 아파트매매 가격지수, 주택담보 대출금리와 KOSPI 주가지수에 의해 영향을 받는 것으로 나타났다.
In this paper, we propose a method of predicting the next-day stock price fluctuations of 10 KOSDAQ-listed companies in 5G, autonomous driving, and electricity sectors by training SVM, XGBoost, and LightGBM models from macroeconomic·financial market indicators, technical indicators, social interest indicators, and daily positive indices extracted from online news. In the three experiments to find out the usefulness of social interest indicators and daily positive indices, the average accuracy improved when each indicator and index was added to the models. In addition, when feature selection was performed to analyze the superiority of the extracted features, the average importance ranking of the social interest indicator and daily positive index was 5.45 and 1.08, respectively, it showed higher importance than the macroeconomic financial market indicators and technical indicators. With the results of these experiments, we confirmed the effectiveness of the social interest indicators as alternative data and the daily positive index for predicting stock price fluctuation.
주식투자의 대중화, 관심의 증가에 따라 주가예측의 중요성이 증대되고 있다. 주가의 변화는 어떤 경향이나 패턴에 의해 움직인다고 가정할 때, 과거의 주가분석을 통해 이들의 변화를 잘 설명할 수 있는 모델의 구성이 가능할 것이다. 동적인 현상을 반영하는 최적의 모델이 구성된다면 이를 통해 향후의 일정기간의 주가의 운동양태의 예측이 가능할 것이다. 본 연구에서는 주가와 같은 템포랄(temporal) 데이터를 잘 설명할 수 있는 모델결정에 대한 방법론으로서 오토마타 기반의 모델을 가정한다. 모델의 최적 상태 수를 결정하기 위한 기준으로서 베이지안정보기준(BIC : Bayesian Information Criterion) 근사법을 사용한다. 베이지안정보기준의 유효성을 살펴보고 베이지안정보기준을 실제 주가데이터 모델의 상태 수 결정과정에 적용하여 모델을 생성한 후 결정된 모델을 통하여 일정 기간의 일별주가곡선의 운동양태를 예측한다. 실제의 주가곡선에 적용하여 모델의 유효성을 확인하였고 예측 주가곡선의 운동양태가 실제 주가 곡선과 유사함을 확인하였다.
We proposed a neural network based “left shoulder”detector. The auto-associative neural network was trained with the “left shoulder”patterns obtained from the Korea Composite Stock Price Index, and then tested out-of-sample with a reasonably good result. A hypothetical investment strategy based on the detector achieved a return of 132% in comparison with 39% return from a buy and hold strategy
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.