• Title/Summary/Keyword: stochastic programming problem

Search Result 77, Processing Time 0.022 seconds

STABILITY OF EQUIVALENT PROGRAMMING PROBLEMS OF THE MULTIPLE OBJECTIVE LINEAR STOCHASTIC PROGRAMMING PROBLEMS

  • Cho, Gyeong-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper the stochastic multiple objective programming problems where the right-hand-side of the constraints is stochastic are considered. We define the equivalent scalar-valued problem and study the stability of the equivalent scalar-valued problem with respect to the weight parameters and probability mesures under reasonable assumptions.

  • PDF

Determining the Efficient Solutions for Bicriteria Programming Problems with Random Variables in Both the Objective Functions and the Constraints

  • Bayoumi, B.I.;El-Sawy, A.A.;Baseley, N.L.;Yousef, I.K.;Widyan, A.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.99-110
    • /
    • 2005
  • This paper suggests an efficient approach for stochastic bicriteria programming problem (SBCPP) with random variables in both the objective functions and in the right-hand side of the constraints. The suggested approach uses the statistical inference through two different techniques: In one of them, the SBCPP is transformed into an equivalent deterministic bicriteria programming problem (DBCPP), then the nonnegative weighted sum approach will be used to transform the bicriteria programming problem into a single objective programming problem, and the other technique, the nonnegative weighted sum approach is used to transform the SBCPP to an equivalent stochastic single objective programming problem, then apply the same procedure to convert stochastic single objective programming problem into its equivalent deterministic single objective programming problem (DSOPP). In both techniques the resulting problem can be solved as a nonlinear programming problem to get the efficient solutions. Finally, a comparison between the two different techniques is discussed, and illustrated example is given to demonstrate the actual application of these techniques.

  • PDF

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.

Stochastic Weapon Target Assignment Problem under Uncertainty in Targeting Accuracy (명중률의 불확실성을 고려한 추계학적 무장-표적 할당 문제)

  • Lee, Jinho;Shin, Myoungin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.23-36
    • /
    • 2016
  • We consider a model that minimizes the total cost incurred by assigning available weapons to existing targets in order to reduce enemy threats, which is called the weapon target assignment problem (WTAP). This study addresses the stochastic versions of WTAP, in which data, such as the probability of destroying a target, are given randomly (i.e., data are identified with certain probability distributions). For each type of random data or parameter, we provide a stochastic optimization model on the basis of the expected value or scenario enumeration. In particular, when the probabilities of destroying targets depending on weapons are stochastic, we present a stochastic programming formulation with a simple recourse. We show that the stochastic model can be transformed into a deterministic equivalent mixed integer programming model under a certain discrete probability distribution of randomness. We solve the stochastic model to obtain an optimal solution via the mixed integer programming model and compare this solution with that of the deterministic model.

A Two-stage Stochastic Programming Model for Optimal Reactive Power Dispatch with High Penetration Level of Wind Generation

  • Cui, Wei;Yan, Wei;Lee, Wei-Jen;Zhao, Xia;Ren, Zhouyang;Wang, Cong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The increasing of wind power penetration level presents challenges in classical optimal reactive power dispatch (ORPD) which is usually formulated as a deterministic optimization problem. This paper proposes a two-stage stochastic programming model for ORPD by considering the uncertainties of wind speed and load in a specified time interval. To avoid the excessive operation, the schedule of compensators will be determined in the first-stage while accounting for the costs of adjusting the compensators (CACs). Under uncertainty effects, on-load tap changer (OLTC) and generator in the second-stage will compensate the mismatch caused by the first-stage decision. The objective of the proposed model is to minimize the sum of CACs and the expected energy loss. The stochastic behavior is formulated by three-point estimate method (TPEM) to convert the stochastic programming into equivalent deterministic problem. A hybrid Genetic Algorithm-Interior Point Method is utilized to solve this large-scale mixed-integer nonlinear stochastic problem. Two case studies on IEEE 14-bus and IEEE 118-bus system are provided to illustrate the effectiveness of the proposed method.

L-SHAPED ALGORITHM FOR TWO STAGE PROBLEMS OF STOCHASTIC CONVEX PROGRAMMING

  • Tang, Hengyong;Zhao, Yufang
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.261-275
    • /
    • 2003
  • In this paper we study two stage problems of stochastic convex programming. Solving the problems is very hard. A L-shaped method for it is given. The implement of the algorithm is simple, so less computation work is needed. The result of computation shows that the algorithm is effective.

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

INDEFINITE STOCHASTIC LQ CONTROL WITH CROSS TERM VIA SEMIDEFINITE PROGRAMMING

  • Luo, Chengxin;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.85-97
    • /
    • 2003
  • An indefinite stochastic linear-quadratic(LQ) optimal control problem with cross term over an infinite time horizon is studied, allowing the weighting matrices to be indefinite. A systematic approach to the problem based on semidefinite programming (SDP) and .elated duality analysis is developed. Several implication relations among the SDP complementary duality, the existence of the solution to the generalized Riccati equation and the optimality of LQ problem are discussed. Based on these relations, a numerical procedure that provides a thorough treatment of the LQ problem via primal-dual SDP is given: it identifies a stabilizing optimal feedback control or determines the problem has no optimal solution. An example is provided to illustrate the results obtained.

Stochastic Programming for the Optimization of Transportation-Inventory Strategy

  • Deyi, Mou;Xiaoqian, Zhang
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2017
  • In today's competitive environment, supply chain management is a major concern for a company. Two of the key issues in supply chain management are transportation and inventory management. To achieve significant savings, companies should integrate these two issues instead of treating them separately. In this paper we develop a framework for modeling stochastic programming in a supply chain that is subject to demand uncertainty. With reasonable assumptions, two stochastic programming models are presented, respectively, including a single-period and a multi-period situations. Our assumptions allow us to capture the stochastic nature of the problem and translate it into a deterministic model. And then, based on the genetic algorithm and stochastic simulation, a solution method is developed to solve the model. Finally, the computational results are provided to demonstrate the effectiveness of our model and algorithm.