• Title/Summary/Keyword: stochastic perturbation method

Search Result 52, Processing Time 0.025 seconds

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.

Z-axis Contact Detection Algorithm for a Wire Bonder using a Discrete Kalman Filter

  • Kim, Jung-Han
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • We propose a new contact detection algorithm for fine pitch wire bonding. Fast and stable contact detection of the z-axis in wire bonding is extremely important to maintain the quality of fine pitch gold wire bonding processes, which use a small pad less than $70{\mu}m$ in diameter. A small perturbation in the contact detection time causes a large difference in the size of the formed squashed ball. The new detection method is based on a statistical approach and designed for a discrete Kalman filter. It is faster and has smaller detection time variations than conventional detection methods. Experimental results are presented to demonstrate the advantages of the proposed algorithm.

The Effect of Turbulent Premixed Flame on the Wave Scattering (난류예혼합화염이 음파의 산란에 미치는 영향에 관한 연구)

  • Cho, Ju-Hyeong;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Analytical investigation of acoustic wave scattering from turbulent premixed flames was conducted to evaluate the acoustic energy amplification/damping. Such acoustic energy change is attributed to the acoustic velocity jump due to flame's heat release. Small perturbation method up to second order and stochastic analysis were utilized to formulate net acoustic energy and the energy transfer from coherent to incoherent energy. Randomly wrinkled flame surface is responsible for the energy transfer from coherent to incoherent field. Nondimensional parameters that govern net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, incidence angle, and temperature ratio. The dependence of net acoustic energy upon these parameters is illustrated by numerical simulations in case of Gaussian statistics of flame front. Total net energy was amplified and the major factors that affect such energy amplification are incidence angle and temperature ratio. Coherent (incoherent) energy is damped (amplified) with rms height and correlation length of flame front.

  • PDF

A Study on the Stochastic Sensitivity in Structural Dynamics (구조물의 동적 응답에 대한 확률 민감도 해석에 관한 연구)

  • 최찬문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.177-190
    • /
    • 1996
  • 구조물의 동적 응답 해석 문제에 대해서, 확률 유한요소법을 논의코자, 기조의 유한요소 해석법에 수반 변수법(adjoint variable approach)과 2차 섭동법(second order perturbation method)을 적용한다. 동적 민감도의 시간 응답을 고려하기 위해서 모든 시간에 대해서 갖는 구속 조건의 범함수 형태를 취하고, 시간 적분에 있어서 중첩법(fold superposition technique)에 근거를 둔 수치 해석이 훨씬 더 효과적임을 보인다. 본 논문의 확률 유한요소 해석법은 기존의 유한요소 해석법은 기존의 유한요소 코드에 맞추어 쉽게 적용할 수 있는 이점이 있음을 보이며, 이의 검정을 위해서, 2차원과 3차원 프레임 구조물에 대한 수치 해석을 하고 그 결과를 검토해 보았다.

  • PDF

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

SPSA Approach to Image Reconstruction in Electrical Impedance Tomograhpy (전기 임피던스 단층촬영법에서 SPSA를 이용한 영상복원)

  • 김호찬;부창진;이윤준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.23-28
    • /
    • 2004
  • In EIT, various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. In this paper, a SPSA approach is proposed for the solution of the EIT image reconstruction. Results of numerical experiments of EIT solved by the SPSA approach are presented and compared to that obtained by the modified Newton-Raphson(mNR) method.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Buckling of axially compressed composite cylinders with geometric imperfections

  • Taheri-Behrooz, Fathollah;Omidi, Milad
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.557-567
    • /
    • 2018
  • Cylindrical shell structures buckle at service loads which are much lower than their associated theoretical buckling loads. The main source of this discrepancy is the presence of various imperfections which are created on the cylinder body during different processes as manufacturing, handling, assembling and machining. Many cylindrical shell structures are still designed against buckling based on the experimental data introduced by NASA SP-8007 as conservative lower bound curves. This study employed the numerical based Linear Buckling mode shape Imperfection (LBMI) method and modified it using a stochastic method to assess the effect of geometrical imperfections in more details on the buckling of cylindrical shells with and without the cutout. The comparison of results with those obtained from the numerical Simcple Perturbation Load Imperfection (SPLI) method for cylinders with and without cutout revealed a good correlation. The effect of two parameters of size and number of cutouts on the buckling load was investigated using the linear buckling and Modified LBMI methods. Results confirmed that in cylinders with a small cutout inserting geometrical imperfection using either SPLI or modified LBMI methods significantly reduced the value of the predicted buckling load. However, in cylinders with larger cutouts, the effect of the cutout is dominant, thus considering geometrical imperfection had a minor effect on the buckling loads predicted by both SPLI and modified LBMI methods. Furthermore, the modified LBMI method was employed to evaluate the combination effect of cutout numbers and size on the buckling load. It is shown that in small cutouts, an increasing in the cutout size up to a certain value resulted in a remarkable reduction of the buckling load, and beyond that limit, the buckling loads were constant against D/R ratios. In addition, the cutout number shows a more significant effect on decreasing the buckling load at small D/R ratios than large D/R ratios.