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INTRODUCTION

The randomness are concerned with the uncer-
tainties in the design parameters, which is the
so — called inherent variability. Randomness may
exist in the characteristics of the structure itself
(e.g. material properties, member size) or in the
environment to which the structure is exposed
(e.g. load, support conditions). In some structure,
the response is sensitive to both the material and
geometric properties of the structure as well as
to the applied loads even small uncertainties in
these characteristics can adversely affect the
structural performance. Moreover, since such un-
certainties are usually spatially distributed

over the region of the structure and must be
modelled as random fields, and the structures
themselves are frequently so complex as to
exclude their analytical analysis even in the
deterministic case, the need for an effective
numerical tool to deal with a broad class of sto-
chastic structural problems becomes evident.
The basic methodology being adopted in this
paper to quantify structural response uncertain-
ties is a Taylor series expansion to formulate
linear relationships between some characteristics
of the random response and the random struc-
tural parameters on the basis of the perturba-
tion approach. The SFEA as the second - order

version in this paper is exclusively used as it
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seems both theortically sound and computa-
tionally feasible to apply even for very large
structual systems by using techniques typical
of contemporary computational mechanics. In
particular, we shall present a version of the
finite element approach which accounts for
uncertaints in both the geometry and/or mete-
rial properties of the structure, as well as in
the applied load. The purpose of the SDS anal-
ysis in the SFEA is to consider the dependence
of a structural state functional on design vari-
ables, i.e. to evaluate the change in structural
response with the variations of structural para-
meters. In the SFEA of structure, the proba-
bilistic characteristics of the response are esti-
mated in terms of the variations of the struc-
tural parameters due to their randomness. The
generalized co - ordinates are normalized and
the correlated random variables are trans-
formed to uncorrelated variables, whereas the
secularities are eliminated by the fast Fourier
Transform of complex valued sequences” .

The stochastic finite element models have
been developed by Hisada and Nakagiri®, and
Liu, Belytschko, Besterfield and Mani'* ™. The
theoretical foundation of sensitivity analysis
has been formulated by Zienkiewicz and Camp-
bell®, Haug and Arora®, Haug', Rousselet'' and
Mroz and Haftka'®. The computational aspects
in problems of statics, free vibrations and
dynamics have been discussed by Haug et al.*”
and Hien and Kleiber'*, for instance. On the
other hand, to incorporate uncertainties in geo-
metrical and material properties of structural
members into the displacement and stress
fields the concepts of discretized random fields
has been introduced by Vanmarcke*.

This paper is concerned with this topic. Atten-
tion is restricted to linear structural mechanics,
i.e. to systems whose governing equations of

motion are linear in state variables once the

random variables and design variables are
fixed.

STOCHASTIC FINITE ELEMENT
FORMULATION

Stochastic Finite Element Approach

In order to apply the finite element technique
let us first assume that the region of interest Q
has been discretized by a finite element mesh.
The basic idea of the mean - based, second -
order, second ~ moment analysis in SFEA is to
expand, via Taylor series, all the vector and
matrix stochastic field variables typical of
deterministic FEM about the mean values of
random variables b,(x,), to retain only up to
second - order terms and to use in the analysis
only the first two statistical moments. In this
way equations for the expectations and cross -
covariances(auto covariances) of the nodal dis-
placements can be obtained in terms of the nodal
displacement derivatives with respect to the
random variables.

I~ the structure of the FEM concept the
fields b,(x;) have to be represented by a set of
basic random variables. Thus, it is necessary to
discretize b,(x;) by expressing them in terms of
some nodal values of the appropriate means
and covariances. The following approximation is
adopted :

br(xk): ¢(7 (xk )bra_
r=1,2 - R;a=12 - N 1)

where, ¢5 is the shape function for the a ~ th
nodal point, N is the number of nodal points in
the mech and b,; is the matrix of random para-
meter nodal values ; for a fixed r the vector b,;
ya=1,2, -, ]V, contains as its entries the suc-

cessing nodal values of the random variables b, .
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By introducing now a vector of nodal random
variables b, p=1, 2, -, N=RxN, related to
the matrix b,; by an approximate transformation

bz =Aab, (@)
The random variables of equation (1), b, be-
comes
b(x)= 7 (xp)A,z,0,= ¢, (x)b, (3)

From equation (1)

Elb(x)]=b2(x)= ¢, x)b) (4-1)
Cov(d,(xz), by(x)) =8y = ¢, (%) (x,)S°

4-2)
and  Ab,(x;)=¢,(x;)Ab, 5
where Ab,=b,-b) (6)

and b; and Sy’ stand for the mean values vector
and the covariance matrix of the nodal random
variables vector b, respectively. The remaining
random field variables in the problem consid-
ered, i.e. elastic moduli Cy,(x;), mass density
px), body force fi(x;, 1), boundary traction £,(x,,
1) and displacements u,(x,, 7) are expand the
same shape functions as :

Ciuld (%)) 5 x,)=Cy [0, x)b, %3]
=05 ()Cyus (b))
ploxy) 5 x, 1= pl e, (x)b, 5 1= 5 (x,)pz7 (b))
filbxy) 5 xy, 1=, (2)b, 5 %, T]
=¢z (x )iz (b, 5 D
£1b,(xy) 5 25, TI=E ¢, (x)b, 5 X4, 7]
=@z ()7 (b, ; D)
ulbxy) 5 xp, tI=ul¢,(x,)b, 5 x3, 7]
= ¢z (xphuz (b5 T
=0(x)q by D
=12, ,N;a=1,2,-,N;p=1,2, -,
N;i=1,2,3 (7
where, N is the total number of degree of freedom
in the discretized model.
Substituting the finite elements approxima-
tion into the zeroth, first and second - order vari-

ational statements, employing the standard pert-
urbation procedure and using the arbitariness
of &, the following ‘hierarchical’ finite element

equations of motion are obtained :

- zeroth - order ;
MEABYEYE, s 0+ Cogbays;
+Kodbp)agb, ;s D=Qub,; ) (8

- 1st — order ;

M ogbpaib, ;s D+Codb)g(by; 1)
+Kogba i (b, s D=Q5(by; 7)
- [M b)) qyb,; D+Cibggb, s 7
+Kdb)a b, 1) (9)

—2nd - order ;
M gbpag(b,; D+Cogbqy by 1)
+Kodb)qs (b, s D=1{Qy by 1)
- 2[Migb)q;(b, s D+Cogbrq; by ; 7
Kdbpa b, 0] - [M5(bab, ;7
+C o (bggb, s D+K5(bq by s D1)S”
(10)

where, q,%(b? ; 1=q5(b, ; DS}’ (11)

From equations (8) - (11), the zeroth — order
mass, damping and stiffness matrices and load
vector and their first and second mixed deriva-
tives with respect to nodal random variables b,
are defined as follows.

- zeroth - order functions ;

M%®9) =0t a7 4 0y dQ (12-1
Co Y = o & 50z 05 9 5 +

33 Q'(,)MB B, Byug)d$2 (12-2)
K% ®9) = 5 @ Cuz Bjo Byy d2 (12-3)
QYD =l G [0, dQ+

Js00 @ G @0 A2 (12 - 4)

- first partial derivatives ;
M) =l 0 4. 4 d2 (13-1

Capb)) = It Bl 1 + 03 0 M 5
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+(Bf Ciug + B Cloyi)Bya Bugld
(13-2)
K89 = | & Ciuuz Bja Bup d2 (13-3)

QF®%:7) = lath 5(af £ + /% £1)9,42

+ Jago e 65 9 dOS) (13- 4)
- second partial derivatives ;
M9 = ot A7 G 5 A2 (14-1

Cly 9 = o & gsllag” B +ar P +ay pt;p
+ g 0 ) i + (BF” Clu +
+ BY Cyiug + Bz Cios )Bja Buyld 2
(14-2)
K5 ®) =lq¢ Cihtz Bjo Bup dQ2 (14-3)
QU0 =late 6 o+ 0 fi5 + 07 f
+ 05 £ MadR + fag, i ts” o AOQ)
(14-4)

All the functions (12) - (14) are evaluated at
the expectations b; of the nodal random vari-
ables b,. Having solved equations (8) - (11) for
qg(b; 3 D), q’a”(b: 0 D), qz’(b; ; 7) and their time
derivatives, the probabilistic distributions for
the nodal displacements, velocities and acceler-
ations as well as for the element strains and
stresses can be determined. By the assumption
that the coefficient of variation in the problem
considered are not too large (variances of ran-
dom variables are small when compared with
their expected values) all the solutions can be
obtained fomally by setting e=1 in the expan-
sions.

Thus, the random displacement field can now
expressed as,

adb, s D=qqb,; D+q b, ; DAb,

1 0
+544 (by 5 DAb,Ab, (15)

The dependence of random fields on b,(x,,) of

b; will not be explicitly indicated unless confu-
sion is likely to arise. By the definition of the
nodal displacement expectations at any time
instant t=t and cross - covariances at §1=(x,:',
t,) and E,=(x,., t,) we have, repectively

Elg,®)=[2]7- ] q®py

N-fold

(b1,b2, -4 b)) dbidbz -dbx (16)

Covig,(t,), qy(t)) = Sy (¢, )

T g - Elgy ()

N~ fold

{Qﬂ(t2) - E[q[](tZ)} X pN(bl ’ b2 PR b](/)
dbidbs -dbx amn

where, pg(by, by, -+, by) is the tilde N- variate
probability density function(PDF).

Substituting equation (15) into eqation (16),
using equation (6) and observing that the
terms involving the first variation of 45, van-
ish, yields the second — order accurate expecta-
tions for the nodal displacements at any =t as

0 1 po, po 0 1 (2)
E[q,®)] =qa(t)+§q¢;’ S, =q)+ 54, ®)
(18)

By using equation (15), the same as the nodal
displacement, (15)-(17), random field respons-
es of strain and stress, i.e. the strain and stress
tensor (random field), the second — order accu-
rate expectation of strain and stress compo-
nents at any time instant t=t¢ and their first -
order accurate cross - covariances at &, =(x,,,
t,) and & =(x,., t,) of the strain and stress, may

be obtained.
Stochastic Structural Sensitivity

Consider structural response of the linear -
elastic system with N degrees of freedom
described by an integral functional

o= fGlq(h,b,t), K]dt (19)
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The system satisfies the equations of motion

M (h,b)dR,b,0)+Dy(h,0)q,(h,b,t)+ K (h,b)
qih,b,ty=f{h,d,t)
Qj(h,b,0)=0,
q{h,b,0)=0i,j=1, -, N (20)

where symbols A=1{h’}, e=1,---.E, b=1{b"}, r=
1, -, R, and ¢, t<[0, T1 denote the vector of
design variables, the vector of random vari-
ables and time variable, respectively. Clearly,
some or all components in the vectors h and b
ca n coincide. The random functions g=gq,(h,b,t),
M (h,b), Di{h,b), K;{h,b) and f(h,b,t) represent
the nodal displacement vector, mass, damping,
stiffness matrices and load vector, respectively.

To incorporate into the formulation uncer-
tainties of structural material, geometry and
load the second order perturbation approach is
used. For the random functions M, D, K, f;,
G, qi, Ay M, D, K, f;, G the Taylor expan-
sion is done about the spatial expectations of
the random variables b,, denoted by 4", with a
given small parameter 6. For instance, for the
first derivative of the stiffness with respect to
the design variable he we write

. P
K;j(h,b)y=K'+ 6K Ab'+ 6 K" ab'ab" (21
ile,"’,N,e=1,"',E,r,S=1,"‘,R

where 0Ab"=8b" denotes the first order varia-
tion of & about b, ; (.)°, (.)" and (.)” represent
the expectation, first and second(mixed) partial
derivatives with respect to the random variables
evaluated at their expectations, respectively. It
is noted that functions with superscript '0' are
deterministic, whereas functions with super-
scripts ', and ',rs’ are random. These random
functions can be expressed through the first

two moments of random variables as

bi=E®b)= [ bgb)db (22)

Covit, b")= [ ['2(b" - by)b" - byg(h’, b')db'db’
23-1)

or, equivalently

Cov(b,6")=R(b",b'W[Var(d)Var (5)] (23-2)

With

R B)= [ [ bbg(b b )dbdb’ (24)
Var(p))=o’E*(b) (25)

where, E(&), Cov(b',b"), R(b,b°), Var(b"), g(b',b")
and a denote expectation, covariance, correla-
tion ; variance, joint probability density func-
tions and coefficient of variation, respectively.
Functions involving partial derivatives of the
mass, damping, stiffness and loading with res-
pect to random variables can be calculated exactly
by partial differentiation by the finite differ-
ence technique or by the least square fit method".
The partial derivatives G™, G*, G*", G, G,
G7 can be calculated by the finite differences or
the least square fits, since they are generally im-
plicit function of random variables.

Substituting the expansion equations similar
to equation(21) for M, Dy, K;;, f;, G, q;, A, col-
lecting terms of order 1, 6 and &, the Oth -,
1st - and 2nd order equations of the structural
and adjoint systems can be respectivély obtained
as:

one pair of the zeroth oeder equations

M GO +Dyg )+ K ai)=ft); (26-1)
M) - DGAD+ K, A(D=G ()& 1) ;
(26-2)

R pairs of the first order equations(r=1....,R)

M;q{(O+Djq (O +K;q; (1)
=f{(t) - [M;jg))+D;;q;@)+K;[q;t)]
(27-1)
My (6)+Dy A (8)+ Ky A (2)
=G(&) - [MjD+DjA(D+K; 2]

27-2)
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one pair of the second order equations
0° 12) 0 i2)

M;qju)(t)‘{'l)qu (t)+KUqJ (t)

1 & s L A
z("éf; (t)" [ gqj‘ (t)‘f‘Dqu (t)+K,jqj (t)]

L o - "o
-5 M5a O+ Djg 0+ K] q;(®)])Cov(¥’, b")

(28-1)

M,;C.I.jm( r)_*_Di;(-Ij(zx( T)+Kijqj(2;( 7
1 . .
=(5 G O&D) ~ [M{E D+ Dy (0 + Ky ()]

- SIS+ DA+ Ky 0] Cov(t', &)

i %
(28 -2)
with, r, s=1,---,R, i, j=1,---,N and
2) 1 9 r 8
4G =59 Cov(b', b") (29)
2y ]- e r 8

Note that by the definition of the covariance
function the 2nd - crder equations are obtained
by multiplying the joint probability density fun-
ction by the second - order terms and integrat-
ing over the domain of the random field b".

In order to reduce the double summation in
equations (28) to the single summation, the cor-
related random variables b are transformed to
a set or uncorrelated random variables ¢, through

a standard eigenproblem®
Cov(b', b"YU=Var(chU (31)

where the covariance matrix Cov(b',b"), r, s=
1,---,R is positive definite, U is an orthogonal R
X R — dimensional fundamental matrix and Var
(c,) is an R - dimensional diagonal matrix. In
contrast to the modal structural problem where-
in the lowest modes are used, only the VIVLKR)
highest values of Var(c,)are required to simu-
late the major characteristics of many proba-
bilistic distributions?. If the random vector &’ is

composed of three uncorrelated parts of random
load geometry, and material, the highest modes
for each of the three parts of Cov(b',0°) are
extracted to obtain Var(c,). Thus, we get

¢ =U b, Ec)=U. by, 3.)dc'=U,,.)/b"
(32)

Substituting equations (31),(32) in equations
(26) - (28) the mixed derivatives (.)” reduce to
the second derivatives (.)" (no sum on r) ; and the
double summation over r, s, r, s=1,... R,
reduces to the single summation over v, v=1,
..,V. Thus, by employing uncorrelated random
variables ¢,, equations(26) — (28) read :

one pair of the transformed zeroth order equ-

ations
Mg +Dqi ) +K ) =ft)  (33-1)
M (D - D0 +K (n=g{(v)  (33-2)

V pairs of the first order equations(r=1,...,V)

Miq®+Dgq;®O+K,q;)=p{t) (34-1)
MiA( - DA (D+K, A (D=g(7) (34-2)

one pair of the transformed second order equ-

ations

0. (2) Q- 12y 0 121 2)

M a7 ®)+Dq] (O+K;q, ®)=p;"(t) (35-1)
M A0 - DSRS0+ K A7 (D=g (1) (35 - 2)

In the above equations (.)" and (.)" denote the
first and second derivatives with respect to c,.
Furthermore, the transfornratron of equation
from the generalized co - ordinates g,(t) and
A{7) to the normalized co - ordinates (¢) and
U,(7) is used to decouple equations(33) - (35). We
have then :

Z pairs of the uncoupled Ost - order equations

B@+2E, w, 1)+ w: 7 t)=pyt)
9,(1) - 28, 0, 9(D)+ ] (D=8

(36 -1)
(36 -2)

Z XV pairs of the uncoupled 1st - order equa-
tions
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B +2E @, )+ o, y)=p;t) (37-1)
V(D) - 28 w, 8, (D+ 0. 9, (D=g(7) (37-2)

Z pairs of the uncoupled 2nd - order equations

BO+28 0, % O+ 3 O=p,@)
(38-1)
9, %(1) - 2E, , 9 7(D+ o’ 0,7 (1)=g"(1)
(38-2)

The eigenproblem has to be solved only once
and the same eigenpairs are used for either the
structural or adjoint systems ; the Oth-. 1st—,
2nd - order structural and adjoint equations
can be solved for g;(t), 1;(7) ; g;(t), A;(7) and
q;(#), A7(7) in parallel and by the same algo-
rithm for integrating equations of motion. In
turn, the uncoupled equations (36) — (38) can be
solved alternatively by the step — by - step direct
integration techniques'®. It is observed that, in
contrast to the global mass, damping and stiff-
ness matrices, most terms in the matrices of
their derivatives with respect to design and ran-
dom variables are equal to zero ; and almost all
operations required compute the right hand
sides can be carried out by vector multiplica-
tions and at the element level.

The second - order perturbation approach can
give invalid solutions owing to the appearance
of secular terms. Such an unbounded solution
may occur even for conservative syste ms which
are known to possess a bounded solution. To
eliminate secularities the resonant parts from
these force sequences have to be removed. For
the case of multi - degree — of - freedom sys-
tems an efficient numerical procedure™ has
been proposed, in which the sine and cosine
transform pairs are used.

Having solved equations (33) — (35) the prob-
abilistic distributions for the sensitivities of
structural response can be evaluated. The ex-
pectations and covariances of the sensitivity

gradients can be presented as

E(¢)= [ ¢'g®)db’ (39)
Cov(¢', )= [0 L' 2[¢" - E(¢9] [¢' - E(¢)]
g, b")dbdb (40)

Substituting the expansion equations for g,
A, M, D, K, f;, G“(which are similar to equa-
tion (21)) into equations (39), (40), retaining
variations of br up to the second order and ob-
serving that the terms involving the first varia-
tion vanish by the definition, yields the second
- order ~ accurate expectations and the first -
order accurate covariances of the sensitivity
gradients evaluated at time ¢,t=[0,T'l, expres-
sed in terms of the transformed random vari-
ables as follows :

0e 1 . .
E(¢(t)=G (t)+5 UEIG""Var(c)

+ [o[AAG+ 20 - FI°x
+Z (B4 +C"H)Var(eldr (41)

Cov(¢™(t), ¢'t))= U)él [G™(®)G™(t)
+G@) [IADA (D +Bl(DA(D]dT
+G™@) [HIALDA(D+B(DA(D]dT
+ Jo JALDALIA (DA )
+ B} (DB () DA}(v)
+ [A{(DB] (v)+Av)B; (7]
A (DA ()t dv)Var(c) (42)

where 1, v are dumnmy variables of integration,
T, v=[0,2], t<[0,77.

In similar way, for the static case a system or
the Oth —, 1st —, 2nd - order structral and adjoint
equations can be obtained. Employing the trans-
formed random variables the two moments of
the sensitivity gradients read

E(g)=G"+— Z G*"Var(c)+A(L+A4)

- k?jeq.llz’i? + 1§ I(B;( A; + Ci“}fi))var(cv)
(41)
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Cov(¢, ¢"1= Z [G*G™+(G A+ G AL
+(G“B+G" B +AA XA
+(AB] +AB;")A; 4+ BB’ A{A) Var(c X 42)

NUMERICAL EXAMPLES

Example 1

Authors considered the time response of the
framework subjected to a concentrated time -
varying load, Fig. 1. The response functional is
assumed as

q2
H)=—3--1<0
90

Qr)
kg A QAr)
51
! 1

26
hi
1 L. :

o ols 050 oo
e ——

Fig. 1 2 - dimensional frame and load function

where, g, is the vertical displacement at the
nodal - point 51 of the frame, g, denotes an
admissible value. The element cross sectional
areas are assumed as random variables a’, r=
1,---,100. The respective expectations, correla-
tion function and coefficient of variation of the
design are asseumed as follows :

EA)=A"=10.0

R(A A Y=expl — abs(x - x")/A], 1=0.5,
x"=0.,x"=10

a=0.05

The deterministic data are assumed : length
=200, h=100, A;=50, Young's modulus, E=
2.0x 10", Poisson's ratio v=0.2, mass density
A=0.001, damping factor £=0.05, and allow-
able displacement q,=0.012. To solve the initial
- terminal problem the mode superposition tech-
nique is used with the 10 lowest eigensystems.
The set of 100 correlated random variables is
transformed to a set of uncorrelated vanables,
out of which the 10 highest modes are used in

the calculation. The equations are integrated

0015 |- el -

deterministic ver. displ. at 51  deterministic hor. displ. at 26
@ o

~ver: dispt; exp-at 51~ =~ ~hor;displrexprat 26 <" TP

displacement (cm )

03 0.4 05

time (sec)

Fig.2 Displacement response of deterministic and stochastic dynamics analysis at 26, 51 node of 2 - dim. frame.

-184-



A Study on the Stochastic Sensitivity in Structural Dynamics

with respect to time for 512 time steps (At= ances of the vertical displacement at the
0.001). The secular terms are removed with the nodal - point 51 and horizontal displacement at
secularity elimination factor r=0.15 and with 26(compared against the deterministic solu-
1024 Fourier terms. Fig. 2, 3 shows the time tion). The time responses of expectations, vari-
response of expectations, variances and covari- ances and covariance of the sensitivity gradient
[
1E-06 |-

5€-07

hor. displ. variance at 26 ver. displ. variance at 51

displ. covariance at 26-51

st o e

1 1 i 1 1
0 0.1 02 03 04 05

time (sec)

Fig. 83 Variance and covariance response of node displacement in stochastic sensitivity analysis at 26, 51
node of 2 - dim. frame.

0.02

0.01 — =

-0.01

0.02

0.03 i 1 | 1 1
(] 0.1 02 03 04 05
time ( sec)

Fig. 4 Expectation of design sensitivity response of deterministic and stochastic dynamics analysis at 28, 51 node
of 2 - dim. frame.
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1.5805 sensitivity vanance af 96 sensilivity variance at 51
sensitivity covariance at 26-51 .

1E-05

5E-06 |- - bmfed R H

Piivd
) ;A L Lo
i 1 L { 1
0 0.1 02 03 04 0.5

time ( sec)
Fig. 5 Covariance of design sensitivity response in stochastic dynamics sensitivity analysis at 26, 51 node

of 2 - dim. frame.

at the nodal - point 51 and at 26 are shown in
Fig. 4, 5. The computation time was 1920 sec.

Example 2

Next, the authors estimated the time response
of the sensitivity of a 3 — dimensional frame struc-
ture fixed at boundaries and subjected to a con-
centrated time — varying load at nodal - point
6, Fig. 6. The finite element mesh includes 40
elements(40 random design variables).

The response functional is assumed as

q2
Hn=-32--1<0
90

where ¢, is the z — displacement at load point

kg \Qr)
Ar) ] 22
100
6 11
50

T
; 0 0is5 050
sec

Fig. 6 3D frame and load function

No. 6, g, denotes an admissible value. The
expectation, correlation function and coefficient
of variation of the designs are given, respec-
tively, as follows :

E[A1=A"(1.0+ 6,

EA™ T=ElA], r=1,---,40

R[A" A'1=expl —abs(x' - x"YA], r,s=1,---,40
a=0.07, 2=0.1, A,=10.0, 6=0.3

where, x;=0.0, x,=0.01, x,,,=1.0.

and, the deterministic data are assumed, i.e.
length {=100, Young's modulus E=2.0x 10,
Poisson's ratio v=0.3, mass density y=0.001,
damping factor £=0.002. To solve the initial -
terminal problem the mode superposition tech-
nique is used with the 10 lowest eigensystems.
The set of 60 correlated random variables is
transformed to a set of uncorrelated variables,
out of which the 10 highest modes are used in
the calculation. The equations are integrated
with respect to time for 512 time steps (At=
0.001). The secula terms are removed with the
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Fig. 7 Displacement response of deterministic and stochastic dynamics sensitivity analysis at 6, 11 node of
3 - dim. frame.
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Fig. 8 Variance and covariance response of node displacement in stochastic sensitivity analysis at 6, 11 node

of 3 - dim. frame.

secularity elimination factor »=0.15 and with
1024 Fourier terms. The time response of
expectations and standard deviation of the z -
direction at 6 -~ nodal point are displayed in

Fig. 7, 8. The time distribution of expectations,
variances and covariance of the sensitivity gra-
dient at 6, 11 - nodal point and in Fig. 9, 10.
The computation time was 1050 sec.
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Fig. 9 Expectation of sensitivity of stochastic dynamics sensitivity analysis and sensitivity of deterministic
analysis at 6, 11 node of 3 - dim. frame.
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Fig. 10 Variance and covariance of design sensitivity response in stochastic dynamics sensitivity analysis
at 6, 11 node of 3 - dim. frame.

finite element approach(SFEA) to stochastical-
ly described variations in geometrical, material

CONCLUSION

Th 1 f th hast and loading parameters is an important subject
t .
e structural response of the stochastic which can be studied using current finte ele-
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ment approach. Sinse the structural design
sensitivity(SDS) and SFEA are closely related
in problem statement, finite element modelling
and computer implementation, the stochastic
sensitivity analysis using the SFEA can be for-
mulated in a natural and effective way. In fact,
both the formulations for the SDS and SFEA
are based on the perturbation approach. If the
first — order perturbation is assumed, the mod-
els of SFEA and SDS are almostly identical.
Another common feature is that involving the
discretization of the parameter spaces(of a ran-
dom field for SFEA and a design field for SDS).
This enables one to approximate either the ran-
dom field or the design field by the same inter-
polation functions. Therefore, if a random vari-
able and a design variable are defined by the
same quantity, i.e. A=b, the derivatives of the
element stiffness and loads must be calculated
only once and can be used simultaneously as
the derivative with respect to the design vari-
able and the derivative with respect to the ran-
dom variable. And the stochastic sensitivity
analysis requires a much finer finite element
mech than a typical structural problem. It is
seen that the probablilistic characteristics in
SFEA(for both the homogeneous and inhomo-
geneous random fields) and the sensitivity
characteristics in SDS are translted entirely to
the right hand sides of the equations. Thus, the
global sriffness matrix has to be assembled and
factorized only once and both the equilibrium
equations and the adjoint equations can be
solved simultaneously. Also, the zeroth — | first -
and second — order equation pairs of the struc-
tural and adjoint systems can be solved in par-
allel. The algorithm developed have proved to
be accurate and efficient(low computation cost,
as shown from the computation times given for
each numerical example) in the analysis of

small - and medium - size systems and can be

immediately adapted to fit into existing finite
element programs, in which differentiation
with respect to random and design variables
can be carried out explicitly. However, the com-
putational approach with implicitly generated
finite elements does not seem to have been
fully investigated in the literature and it
requires future work to increase its applicabili-

ty and effectiveness.
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