• Title/Summary/Keyword: stochastic information

Search Result 724, Processing Time 0.027 seconds

A Design and Analysis of Improved Firefly Algorithm Based on the Heuristic (휴리스틱에 의하여 개선된 반딧불이 알고리즘의 설계와 분석)

  • Rhee, Hyun-Sook;Lee, Jung-Woo;Oh, Kyung-Whan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.39-44
    • /
    • 2011
  • In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) which the problem domain is similar with the FA in terms of accuracy, algorithm convergence time, the motion of each particle. The compare experiments show that the accuracy of FA is not worse than PSO's, but the convergence time of FA is slower than PSO's. In this paper, we consider intuitive reasons of slow convergence time problem of FA, and propose the improved version of FA using a partial mutation heuristic based on the consideration. The experiments using benchmark functions show the accuracy and convergence time of the improved FA are better than them of PSO and original FA.

A Simple Stereo Matching Algorithm using PBIL and its Alternative (PBIL을 이용한 소형 스테레오 정합 및 대안 알고리즘)

  • Han Kyu-Phil
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.429-436
    • /
    • 2005
  • A simple stereo matching algorithm using population-based incremental learning(PBIL) is proposed in this paper to decrease the general problem of genetic algorithms, such as memory consumption and inefficiency of search. PBIL is a variation of genetic algorithms using stochastic search and competitive teaming based on a probability vector. The structure of PBIL is simpler than that of other genetic algorithm families, such as serial and parallel ones, due to the use of a probability vector. The PBIL strategy is simplified and adapted for stereo matching circumstances. Thus, gene pool, chromosome crossover, and gene mutation we removed, while the evolution rule, that fitter chromosomes should have higher survival probabilities, is preserved. As a result, memory space is decreased, matching rules are simplified and computation cost is reduced. In addition, a scheme controlling the distance of neighbors for disparity smoothness is inserted to obtain a wide-area consistency of disparities, like a result of coarse-to-fine matchers. Because of this scheme, the proposed algorithm can produce a stable disparity map with a small fixed-size window. Finally, an alterative version of the proposed algorithm without using probability vector is also presented for simpler set-ups.

Algorithmic Generation of Self-Similar Network Traffic Based on SRA (SRA 알고리즘을 이용한 Self-Similar 네트워크 Traffic의 생성)

  • Jeong HaeDuck J.;Lee JongSuk R.
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.281-288
    • /
    • 2005
  • It is generally accepted that self-similar (or fractal) Processes may provide better models for teletraffic in modem computer networks than Poisson processes. f this is not taken into account, it can lead to inaccurate conclusions about performance of computer networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A generator of pseudo-random self similar sequences, based on the SRA (successive random addition) method, is implemented and analysed in this paper. Properties of this generator were experimentally studied in the sense of its statistical accuracy and the time required to produce sequences of a given (long) length. This generator shows acceptable level of accuracy of the output data (in the sense of relative accuracy of the Hurst parameter) and is fast. The theoretical algorithmic complexity is O(n).

Correlation over Nonlinear Analysis of EEG and TCI Factor (상관차원에 의한 비선형 뇌파 분석과 기질성격척도(TCI) 요인간의 상관분석)

  • Park, Jin-Sung;Park, Young-Bae;Park, Young-Jae;Huh, Young
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.2
    • /
    • pp.96-115
    • /
    • 2007
  • Background and Purpose: Electroencephalogram(EEG) is a multi-scaled signal consisting of several components of time series with different origins. Recently, because of the absence of an identified metric which quantifies the complex amount of information, there are many limitations in using such a linear method. According to chaos theory, irregular signals of EEG can also result from low dimensional deterministic chaos. Chaotic nonlinear dynamics in the EEG can be studied by calculating the correlation dimension. The aim of this study is to analyze correlation between the correlation dimension of EEG and psychological Test (TCI). Methods: Before and after moxibustion treatment, EEG raw data were measured by moving windows during 15 minutes. The correlation dimension(D2) was calculated from stabilized 40 seconds in 15 minutes data. 8 channels EEG study on the Fp, F, T, P was carried out in 30 subjects. Results: Correlation analysis of TCI test is calculated with deterministic non-linear data and stochastic non-linear data. 1. Novelty seeking in temperament is positive correlated with D2 of EEG on Fp. 2. reward dependence in temperament is positive correlated with D2 of EEG on T3,T4 and negative correlated with D2 of EEG on P3,P4. 3. self directedness in character is positive correlated with D2 of EEG on F4, P3. 4. Harm avoidance is negative correlated with D2 of EEG on Fp2, T3, P3. Conclusion: These results suggest that nonlinear analysis of EEG can quantify dynamic state of brain abolut psychological Test (TCI).

  • PDF

Fast Self-Similar Network Traffic Generation Based on FGN and Daubechies Wavelets (FGN과 Daubechies Wavelets을 이용한 빠른 Self-Similar 네트워크 Traffic의 생성)

  • Jeong, Hae-Duck;Lee, Jong-Suk
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.621-632
    • /
    • 2004
  • Recent measurement studies of real teletraffic data in modern telecommunication networks have shown that self-similar (or fractal) processes may provide better models of teletraffic in modern telecommunication networks than Poisson processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A new generator of pseu-do-random self-similar sequences, based on the fractional Gaussian nois and a wavelet transform, is proposed and analysed in this paper. Specifically, this generator uses Daubechies wavelets. The motivation behind this selection of wavelets is that Daubechies wavelets lead to more accurate results by better matching the self-similar structure of long range dependent processes, than other types of wavelets. The statistical accuracy and time required to produce sequences of a given (long) length are experimentally studied. This generator shows a high level of accuracy of the output data (in the sense of the Hurst parameter) and is fast. Its theoretical algorithmic complexity is 0(n).

Time Series Forecasting on Car Accidents in Korea Using Auto-Regressive Integrated Moving Average Model (자동 회귀 통합 이동 평균 모델 적용을 통한 한국의 자동차 사고에 대한 시계열 예측)

  • Shin, Hyunkyung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.54-61
    • /
    • 2019
  • Recently, IITS (intelligent integrated transportation system) has been important topic in Smart City related industry. As a main objective of IITS, prevention of traffic jam (due to car accidents) has been attempted with help of advanced sensor and communication technologies. Studies show that car accident has certain correlation with some factors including characteristics of location, weather, driver's behavior, and time of day. We concentrate our study on observing auto correlativity of car accidents in terms of time of day. In this paper, we performed the ARIMA tests including ADF (augmented Dickey-Fuller) to check the three factors determining auto-regressive, stationarity, and lag order. Summary on forecasting of hourly car crash counts is presented, we show that the traffic accident data obtained in Korea can be applied to ARIMA model and present a result that traffic accidents in Korea have property of being recurrent daily basis.

Research on the Impact of Logistics Industry Efficiency and Agglomeration Effect on Import and Export Trade in Korea

  • Cheng, Wen-Si
    • Journal of Korea Trade
    • /
    • v.25 no.5
    • /
    • pp.93-109
    • /
    • 2021
  • Purpose - The logistics industry is often featured by its location relevance and industrial concentration. Industrial concentration is conducive to the effective transmission of information by reducing transaction costs and improving transaction efficiency, thus promoting the development of trade. The main purpose of this paper is to measure the spatial total factor productivity and location quotient of the logistics industry in Korea, and to study the impact of the logistics industry efficiency and agglomeration effect on import and export trade in Korea. Design/methodology - First, used the spatial stochastic frontier method to measure the spatial total factor productivity of the logistics industry in Korea, this serves as the efficiency index of the logistics industry in various regions of Korea. Second, calculated the location quotient (LQ) of the logistics industry to measure the industry's concentration degree. Third, employed a spatial econometric model to analyze the impacts of factors such as the efficiency and concentration levels of the logistics industry on import and export trade in Korea. Findings - This study's main findings can be summarized as follows: this study found that the overall efficiency of the logistics industry in Korea needs to be improved, even though it showed an upward trend in all regions of the country; Moreover, the agglomeration level of Korea's logistics industry needs to be improved; Finally, the positive spatial correlation and industrial agglomeration effect of Korea's logistics industry had a positive impact on the country's import and export trade. Originality/value - This study is innovative in terms of research perspective and methods. Most of the previous studies have measured the development level of the logistics industry using the logistics performance index (LPI), Fewer studies have assessed through the spatial total factor productivity and location quotient of the logistics industry in Korea to measure the efficiency index of the logistics industry in various regions of Korea and concentration degree, as well as there was almost no study on the impact of logistics industry efficiency and agglomeration effect on import and export trade in Korea. This study addresses this limitation by analyzing the impacts of the efficiency and agglomeration effect of the logistics industry on import and export trade in Korea.

IMPROVING RELIABILITY OF BRIDGE DETERIORATION MODEL USING GENERATED MISSING CONDITION RATINGS

  • Jung Baeg Son;Jaeho Lee;Michael Blumenstein;Yew-Chaye Loo;Hong Guan;Kriengsak Panuwatwanich
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.700-706
    • /
    • 2009
  • Bridges are vital components of any road network which demand crucial and timely decision-making for Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support system (DSS), have been developed since the early 1990's to assist in the management of a large bridge network. Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the prediction accuracy of bridge deterioration models.

  • PDF

Transportation Card Based Optimal M-Similar Paths Searching for Estimating Passengers' Route Choice in Seoul Metropolitan Railway Network (수도권 도시철도망 승객이동경로추정을 위한 교통카드기반 최적 M-유사경로 구축방안)

  • Lee, Mee young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.1-12
    • /
    • 2017
  • The Seoul metropolitan transportation card's high value lies in its recording of total population movements of the public transit system. In case of recorded information on transit by bus, even though route information utilized by each passenger is accurate, the lack of passenger transfer information of the urban railway makes it difficult to estimate correct routes taken by each passenger. Therefore, pinpointing passenger path selection patterns arising in the metropolitan railway network and using this as part of a path movement estimation model is essential. This research seeks to determine that features of passenger movement routes in the urban railway system is comprised of M-similar routes with increasing number of transfer reflected as additional costs. In order to construct the path finding conditions, an M-similar route searching method is proposed, embedded with non additive path cost which appears through inclusion of the stepwise transportation parameter. As well, sensitivity of the M-similar route method based on transportation card records is evaluated and a stochastic trip assignment model using M-similar path finding is constructed. From these, link trip and transfer trip results between lines of the Seoul metropolitan railway are presented.

Use of Space-time Autocorrelation Information in Time-series Temperature Mapping (시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Climatic variables such as temperature and precipitation tend to vary both in space and in time simultaneously. Thus, it is necessary to include space-time autocorrelation into conventional spatial interpolation methods for reliable time-series mapping. This paper introduces and applies space-time variogram modeling and space-time kriging to generate time-series temperature maps using hourly Automatic Weather System(AWS) temperature observation data for a one-month period. First, temperature observation data are decomposed into deterministic trend and stochastic residual components. For trend component modeling, elevation data which have reasonable correlation with temperature are used as secondary information to generate trend component with topographic effects. Then, space-time variograms of residual components are estimated and modelled by using a product-sum space-time variogram model to account for not only autocorrelation both in space and in time, but also their interactions. From a case study, space-time kriging outperforms both conventional space only ordinary kriging and regression-kriging, which indicates the importance of using space-time autocorrelation information as well as elevation data. It is expected that space-time kriging would be a useful tool when a space-poor but time-rich dataset is analyzed.

  • PDF