• Title/Summary/Keyword: stochastic FEM

Search Result 24, Processing Time 0.016 seconds

Reliability Analysis of Differential Settlement Using Stochastic FEM (추계론적 유한요소법을 이용한 지반의 부등침하 신뢰도 해석)

  • 이인모;이형주
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 1988
  • A stochastic numerical model for predictions of differential settlement of foundation Eoils is developed in this Paper. The differential settlement is highly dependent on the spatial variability of elastic modulus of soil. The Kriging method is used to account for the spatial variability of the elastic modulus. This technique provides the best linear unbiased estimator of a parameter and its minimum variance from a limited number of measured data. The stochastic finite element method, employing the first-order second-moment analysis for computations of error Propagation, is used to obtain the means, ariances, and covariances of nodal displacements. Finally, a reliability model of differential settlement is proposed by using the results of the stochastic FEM analysis. It is found that maximum differential settlement occurs when the distance between two foundations is approximately same It with the scale of fluctuation in horizontal direction, and the probability that differential settlement exceeds the allot.able vague might be significant.

  • PDF

Optimum Design of the Brushless Motor Considering Parameter Tolerance (설계변수 공차를 고려한 브러시리스 모터 출력밀도 최적설계)

  • Son, Byoung-Ook;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1600-1604
    • /
    • 2010
  • This paper presents the optimum design of the brushless motor to maximize the output power per weight considering the design parameter tolerance. The optimization is proceeded by commercial software that is adopted the scatter-search algorithm and the characteristic analysis is conducted by FEM. The stochastic optimum design results are compared with those of the deterministic optimization method. We can verify that the results of the stochastic optimization is superior than that of deterministic optimization.

On eigenvalue problem of bar structures with stochastic spatial stiffness variations

  • Rozycki, B.;Zembaty, Z.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.541-558
    • /
    • 2011
  • This paper presents an analysis of stochastic eigenvalue problem of plane bar structures. Particular attention is paid to the effect of spatial variations of the flexural properties of the structure on the first four eigenvalues. The problem of spatial variations of the structure properties and their effect on the first four eigenvalues is analyzed in detail. The stochastic eigenvalue problem was solved independently by stochastic finite element method (stochastic FEM) and Monte Carlo techniques. It was revealed that the spatial variations of the structural parameters along the structure may substantially affect the eigenvalues with quite wide gap between the two extreme cases of zero- and full-correlation. This is particularly evident for the multi-segment structures for which technology may dictate natural bounds of zero- and full-correlation cases.

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

Non-stochastic interval factor method-based FEA for structural stress responses with uncertainty

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.703-708
    • /
    • 2017
  • The goal of this study is to evaluate behavior uncertainties of structures by using interval finite element analysis based on interval factor method as a specific non-stochastic tool. The interval finite element method, i.e., interval FEM, is a finite element method that uses interval parameters in situations where it is not possible to get reliable probabilistic characteristics of the structure. The present method solves the uncertainty problems of a 2D solid structure, in which structural characteristics are assumed to be represented as interval parameters. An interval analysis method using interval factors is applied to obtain the solution. Numerical applications verify the intuitive effectiveness of the present method to investigate structural uncertainties such as displacement and stress without the application of probability theory.

Topological optimized design considering dynamic problem with non-stochastic structural uncertainty

  • Lee, Dong-Kyu;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.79-94
    • /
    • 2010
  • This study shows how uncertainties of data like material properties quantitatively have an influence on structural topology optimization results for dynamic problems, here such as both optimal topology and shape. In general, the data uncertainties may result in uncertainties of structural behaviors like deflection or stress in structural analyses. Therefore optimization solutions naturally depend on the uncertainties in structural behaviors, since structural behaviors estimated by the structural analysis method like FEM need to execute optimization procedures. In order to quantitatively estimate the effect of data uncertainties on topology optimization solutions of dynamic problems, a so-called interval analysis is utilized in this study, and it is a well-known non-stochastic approach for uncertainty estimate. Topology optimization is realized by using a typical SIMP method, and for dynamic problems the optimization seeks to maximize the first-order eigenfrequency subject to a given material limit like a volume. Numerical applications topologically optimizing dynamic wall structures with varied supports are studied to verify the non-stochastic interval analysis is also suitable to estimate topology optimization results with dynamic problems.

The Two Dimensional Analysis of RF Passive Device using Stochastic Finite Element Method (확률유한요소법을 이용한 초고주파 수동소자의 2차원 해석)

  • Kim, Jun-Yeon;Jeong, Cheol-Yong;Lee, Seon-Yeong;Cheon, Chang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.249-257
    • /
    • 2000
  • In this paper, we propose the use of stochastic finite element method, that is popularly employed in mechanical structure analysis, for more practical designing purpose of RF device. The proposed method is formulated based on the vector finite element method cooperated by pertubation analysis. The method utilizes sensitivity analysis algorithm with covariance matrix of the random variables that represent for uncertain physical quantities such as length or various electrical constants to compute the probabilities of the measure of performance of the structure. For this computation one need to know the variance and covariance of the random variables that might be determined by practical experiences. The presenting algorithm has been verified by analyzing several device with different be determined by practical experiences. The presenting algorithm has been verified by analysis several device with different measure of performanes. For the convenience of formulation, two dimensional analysis has been performed to apply it into waveguide with dielectric slab. In the problem the dielectric constant of the dielectric slab is considered as random variable. Another example is matched waveguide and cavity problem. In the problem, the dimension of them are assumed to be as random variables and the expectations and variances of quality factor have been computed.

  • PDF

Stochastic Analysis of Base-Isolated Pool Structure Considering Fluid-Structure Interaction Effects (유체-구조물 상호작용을 고려한 면진구조물의 추계학적 응답해석)

  • Koh, Hyun Moo;Kim, Jae Kwan;Park, Kwan Soon;Ha, Dong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.463-472
    • /
    • 1994
  • A method of stochastic response analysis of base-isolated fluid-filled pool structures subject to random ground excitations is studied. Fluid-structure interaction effects between the flexible walls and contained fluid are taken into account in the form of added mass matrix derived by FEM modeling of the contained fluid motion. The stationary ground excitation is represented by Modified Clough-Penzien spectral model and the nonstationary one is obtained by imposing an envelope function on the stationary one. The stationary and nonstationary response statistics of the two different isolation systems are obtained by solving the governing Lyapunov covariance matrix differential equations.

  • PDF

Added effect of uncertain geometrical parameter on the response variability of Mindlin plate

  • Noh, Hyuk Chun;Choi, Chang Koon
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.477-493
    • /
    • 2005
  • In case of Mindlin plate, not only the bending deformation but also the shear behavior is allowed. While the bending and shear stiffness are given in the same order in terms of elastic modulus, they are in different order in case of plate thickness. Accordingly, bending and shear contributions have to be dealt with independently if the stochastic finite element analysis is performed on the Mindlin plate taking into account of the uncertain plate thickness. In this study, a formulation is suggested to give the response variability of Mindlin plate taking into account of the uncertainties in elastic modulus as well as in the thickness of plate, a geometrical parameter, and their correlation. The cubic function of thickness and the correlation between elastic modulus and thickness are incorporated into the formulation by means of the modified auto- and cross-correlation functions, which are constructed based on the general formula for n-th joint moment of random variables. To demonstrate the adequacy of the proposed formulation, a plate with various boundary conditions is taken as an example and the results are compared with those obtained by means of classical Monte Carlo simulation.

Effect of Partially Restrained Connections on Seismic Risk Evaluation of Steel Frames (강 뼈대 구조물의 지진위험도 평가에 대한 부분구속 접합부의 영향)

  • 허정원;조효남
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.537-549
    • /
    • 2001
  • The effect of partially restrained(PR) connections and the uncertainties in them on the reliability of steel frames subjected to seismic loading is addressed. A stochastic finite element method(SFEM) is proposed combining the concepts of the response surface method(RSM), the finite element method(FEM), the first-order reliability method (FORM), and the iterative linear interpolation scheme. The behavior of PR connections is captured using moment-relative rotation curves, and is represented by the four-parameter Richard model. For seismic excitation, the loading, unloading, and reloading behavior at PR connections is modeled using moment-relative rotation curves and the Masing rule. The seismic loading is applied in the time domain for realistic representation. The reliability of steel frames in the presence of PR connections is calculated considering all major sources of nonlinearity. The algorithm is clarified with the help of an example.

  • PDF