• Title/Summary/Keyword: stirrup ratio

Search Result 70, Processing Time 0.033 seconds

Size Effect in the Fracture Behavior of Reinforced Concrete Members (철근콘크리트 부재의 파괴거동에 대한 크기 효과)

  • Kim, Dong-Baik;Kim, Woon-Hak;Paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.292-299
    • /
    • 1998
  • In this study, the size effect in flexural and shear behaviors of reinforced concrete beams with stirrup has been studied. The specimens of different size with same longitudinal reinforcement ratio are tested. The major variables of test include the size(relative depth) of the members as well as the longitudinal reinforcement ratios. The nominal resistances in flexure and shear are obtained for various sizes and steel ratios. It is found from the present study that the size effect is also very pronounced for the flexural resistance in reinforced concrete structures. The prediction formulas for the size effect of reinforced concrete beams in flexure and shear are proposed. The proposed equations agree relatively well with experimental data. The present study will provide useful bases for more accurate analysis and design of reinforced concrete structures.

  • PDF

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

An Experimental Study on Shear Behaviors for Reinforced Concrete Beams Embedded with GFRP Plate with Openings (매립형 유공 GFRP 판으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Choi, Jong-Hoon;Kim, Min-Sook;Kim, Hee-Cheul;Lee, Young-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.407-414
    • /
    • 2012
  • The purpose of this study is to experimentally investigate the shear behavior of reinforced concrete beams embedded with GFRP (glass fiber reinforced polymer) plate with openings. In this study, the parameters include the shape of reinforcement, reinforcement area, and thickness and width of reinforcements. The test was performed on 9 specimens with shear spanto-depth ratio of 2.8. When the reinforcement area was varied, the GFRP plate showed 3.6 times greater shear strength than steel stirrup. The test result showed that shear strength increased as reinforcement area increased. Also, when the shape of a parallelogram GFRP plate was used, it showed higher shear strength than that with rectangular shape. Effect of thickness and width of reinforcement showed that shear capacity increased as width increased. For a comparison study, a calculation of the shear strength of reinforced beams with GFRP plate based on the ACI 318M-08 was compared with the test results. The test results were compared with the maximum shear reinforcement areas required by ACI 318M-08, CSA-04, and EC2-02 provision.

Flexural-Shear Behavior of Beam Members according to the Spacing of Stirrups and Tension Steel Ratio (스터럽간격과 인장철근비에 따른 고강도 콘크리트 보의 파괴거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Choi, Goh-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.513-521
    • /
    • 2003
  • Existing tests results have shown that confining the concrete compression region with closed stirrups improves the ductility and load-carrying capacity of beams. However, only few researchers have attempted to utilize the beneficial effects of the presence of these stirrups in design. This paper presents the result of experimental studies on the load-deflection behavior and the strengthening effect of laterally confined structural high-strength concrete beam members in which confinement stirrups have been introduced into the compression regions. Fifteen tests were conducted on full-scale beam specimens having concrete compressive strength of 41 MPa and 61 MPa. Different spacing of stirrups(0.25∼1.0d) and amount of tension steel($0.55{\sim}0.7{\rho}_b$) as major variables were investigated. And also, this study present an appropriate shear equation for decision of ultimate failure modes of high-strength concrete beams according to stirrup spacing. The equation is based on interaction between shear strength and displacement ductility. Prediction of failure mode from presented method and comparison with test results are also presenteded

Flexural behavior of beams reinforced with either steel bars, molded or pultruded GFRP grating

  • Hadi, Muhammad N.S.;Almalome, Mohammed H.A.;Yu, Tao;Rickards, William A.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.17-34
    • /
    • 2020
  • This paper investigates the flexural behavior of concrete beams reinforced longitudinally with either steel bars, molded glass-fiber reinforced polymer (GFRP) grating mesh or pultruded glass-fiber reinforced polymer (GFRP) grating mesh, under four-point bending. The variables included in this study were the type of concrete (normal weight concrete, perlite concrete and vermiculite concrete), type of the longitudinal reinforcement (steel bars, molded and pultruded GFRP grating mesh) and the longitudinal reinforcement ratio (between 0.007 and 0.035). The influences of these variables on the load-midspan deflection curves, bending stiffness, energy absorption and failure modes were investigated. A total of fifteen beams with a cross-sectional dimension of 160 mm × 210 mm and an overall length of 2400 mm were cast and divided into three groups. The first group was constructed with normal weight concrete and served as a reference concrete. The second and third groups were constructed with perlite concrete and vermiculite concrete, respectively. An innovative type of stirrup was used as shear reinforcement for all beams. The results showed that the ultimate load of the beams reinforced with pultruded GFRP grating mesh ranged between 19% and 38% higher than the ultimate load of the beams reinforced with steel bars. The bending stiffness of all beams was influenced by the longitudinal reinforcement ratio rather than the type of concrete. Failure occurred within the pure bending region which means that the innovative stirrups showed a significant resistance to shear failure. Good agreement between the experimental and the analytical ultimate load was obtained.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Shear performance of reinforced concrete beams with rubber as form of fiber from waste tire

  • Ali Serdar Ecemis;Emrah Madenci;Memduh Karalar;Sabry Fayed;Sabry Fayed;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.337-349
    • /
    • 2024
  • The growing quantity of tires and building trash piling up in landfills poses a serious threat to the stability of the ecosystem. Researchers are exploring ways to reduce and use such byproducts of the construction industry in an effort to promote greener building practices. Thus, using recycled crumb rubber from scrap tires in concrete manufacturing is important for the industry's long-term viability. This study examines the proportion of waste rubber in fiber form, specifically at weight percentages of 5%, 10%, and 15%. Moreover, the study examines the shear behavior of reinforced concrete beams. A total of twelve RC beam specimens, each sized 100 mm by 150 mm by 1000 mm (w × d × L), were constructed and positioned to the test. Various mixtures were designed with different levels of scrap tire rubber content (0%, 5%, 10%, and 15%) and Stirrup Vol. Ratio (2.10, 2.80, and 3.53) in reinforced concrete beams. The findings indicate that the inclusion of scrap rubber in concrete leads to a decrease in both the mechanical characteristics and weight of the material. This is mostly attributed to the lower strength and stiffness of the rubberized concrete. Furthermore, estimations generated by a variety of design codes were examined alongside the obtained data. In order to make a comparison between the estimates provided by the different codes such as ACI 318-14, CEB-FIB and Iranian national building codes, a calculation was done to determine the ratio of the experimental shear strength to the anticipated shear strength for each code.

Experimental Study for GFRP Reinforced Concrete Beams without Stirrups (스터럽이 없는 GFRP 보강근 콘크리트 보에 대한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • This paper evaluates the shear strength, behavior and failure mode of reinforced concrete beams with deformed GFRP reinforcing bar. Four concrete beam specimens were constructed and tested. It was carried out to observe failure behavior and load-deflection of simply supported concrete beams subjected to four-point monotonic loading. In order to eliminate of the uncertainty by the shear reinforcements, any stirrups were not used. Variables of the specimens were shear span-depth ratio, effective reinforcement ratio. The dimensions of specimen is 3,300 or $1,950mm{\times}200mm{\times}240mm$. Clear span and shear span were 2,900mm, 1,000mm respectively. Shear span-depth ratios were 6.5 and 2.5. Effective ratios of Longitudinal GFRP reinforcing bar were $1.126{\rho}_{fb}$, $2.250{\rho}_{fb}$, $3.375{\rho}_{fb}$ and $0.634{\rho}_{fb}$. All beam specimens were broken by diagonal-tension shear and the ACI 440.1R, CSA S806 and ISIS, which was used to design test beams, showed considerable deviation between prediction and test results of shear strengths.