• Title/Summary/Keyword: stirrup ratio

Search Result 70, Processing Time 0.023 seconds

Seismic performance of RC columns with full resistance spot welding stirrups

  • Yu, Yunlong;Dang, Zhaohui;Yang, Yong;Chen, Yang;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.543-554
    • /
    • 2020
  • This paper aims to investigate the seismic performance of RC short columns and long columns with welding stirrups. Through the low-cyclic horizontal loading test of specimens, the seismic performance indexes such as failure modes, hysteretic curve, skeleton curve, ductility, energy dissipation capacity, stiffness degradation and strength degradation were emphatically analyzed. Furthermore, the effects of shear span ratio, stirrups ratio and axial compression ratio on the performance of specimens were studied. The results showed that the seismic performance of the RC short columns with welding stirrups were basically the same as that of the RC short columns with traditional stirrups, but the seismic performance of RC long columns with welding stirrups was better than that of RC long columns with traditional stirrups. The seismic performance of RC short columns and long columns with welding stirrups could be improved by increasing stirrup ratio and shear span ratio and reducing axial pressure ratio. Moreover, the welding stirrup have the advantages of steel saving, industrialization and standardization production, convenient construction, and reducing time, which indicated that the welding stirrups could be applied in practical engineering.

Experimental study on seismic performance of coupling beams not designed for ductility

  • Lam, S.S.E.;Wu, B.;Liu, Z.Q.;Wong, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.317-334
    • /
    • 2008
  • Seismic performance of coupling beams not designed for ductility is examined. Eight 1:4 scale coupling beam specimens, with seven reinforced concrete sections and one composite section, were tested under cycles of push-pull action. Characteristics of the specimens include moderate shear span ratio in the range of 2.5-3.5, high main reinforcement ratio at 3-4% and small to large stirrup spacing with 90- degree hooks. All the reinforced concrete specimens failed in a brittle manner. Displacement ductility of specimens with large stirrup spacing (${\geq}$140 mm) is in the range of 3 to 5. Seismic performance of the specimens is also examined using the ultimate drift angle and the amount of energy dissipated. Correlating the test data, an empirical relationship is proposed to estimate the ultimate drift angle of a class of coupling beams considered in the study not designed for ductility.

The effects of stirrups and the extents of regions used SFRC in exterior beam-column joints

  • Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.223-241
    • /
    • 2007
  • Seven full-scale exterior beam-column joints were produced and tested under reversible cyclic loads to determine. Two of these seven specimens were produced using ordinary reinforced concrete (RC). Steel Fiber Reinforced Concrete (SFRC) was placed in three different regions of the beams of the rest five specimens to determine the extent of the region where SFRC is the most effective. The extent of the region of SFRC was kept constant at the columns of all five specimens. Three of these five specimens which had one stirrup in the joint, were tested to evaluate the effect of the stirrup on the behavior of the beam-column joint together with SFRC. In production of the specimens with SFRC, all special requirements of the Turkish Earthquake Code related to the spacing of hoops were disregarded. Previous researches reported in the literature indicate that the fiber type, the volume content, and the aspect ratio of steel fibers affect the behavior of beam-column joints produced with SFRC. The results of the present investigation show that the behavior of exterior beam-column joints depends on the extent of the region where SFRC is used and the usage of stirrup in the joint, in addition to the parameters listed in the literature.

Cyclic flexural behavior of RC members reinforced with Forta-Ferro and Polyvinyl Alcohol fibers

  • Hamed Rajabzadeh Gatabi;Habib Akbarzadeh Bengar;Murude Celikag
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.333-346
    • /
    • 2023
  • This paper presents findings from an experimental study that was focused on evaluating the use of Forta-Ferro (FF) and Polyvinyl Alcohol (PVA) fibers on the response of moderate and special ductility beams under load cycles. For this reason, eight full-scale specimens, identical in geometry, were subjected to gradual cyclic loading. The specimens included two plain concrete beams with medium and special ductility, three beams with medium ductility and stirrup spacing of one-quarter the effective depth (d/4) and three beams with special ductility, and stirrup spacing of one-half the effective depth (d/2), strengthened with FF and PVA fibers separately. The use of fibers was aimed at reducing the amount of shear reinforcement in flexural members. Here, the variation of parameters including the maximum strength, ultimate strength, stiffness, ductility, damage index, energy dissipation, and equivalent damping was studied. Utilizing FF and PVA fibers improved the performance in beams with moderate ductility when compared to those beams with special ductility. Therefore, in special ductility beams, fibers can be used instead of crossties and in moderate ductility beams, fibers can be added to reduce the ratio of shear reinforcement. Furthermore, increasing the stirrup spacing in the moderate ductility beams from d/4 to d/2 and adding 0.6% FF or 1.5% PVA fibers resulted in behavior similar to those of the moderate ductility beam.

Experimental study on bearing capacity of PFCC column-RC beam joint reinforced with CST

  • Ping Wu;Dongang Li;Feng Yu;Yuan Fang;Guosheng Xiang;Zilong Li
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.19-36
    • /
    • 2023
  • An experimental study of eleven PVC-FRP Confined Concrete (PFCC) column-Reinforced Concrete (RC) beam joints reinforced with Core Steel Tube (CST) under axial compression is carried out. All specimens are designed in accordance with the principle of "weak column and strong joint". The influences of FRP strips spacing, length and steel ratio of CST, height and stirrup ratio of joint on mechanical behavior are investigated. As the design anticipated, all specimens are destroyed by column failure. The failure mode of PFCC column-RC beam joint reinforced with CST is the yielding of longitudinal steel bars, CST and stirrups of column as well as the fracture of FRP strips and PVC tube. The ultimate bearing capacity decreases as FRP strips spacing or joint height increases. The effects of other three studied parameters on ultimate bearing capacity are not obvious. The strain development rules of longitudinal steel bars, PVC tube, FRP strips, column stirrups and CST are revealed. The effects of various studied parameters on stiffness are also examined. Additionally, an influence coefficient of joint height is introduced based on the regression analysis of test data, a theoretical formula for predicting bearing capacity is proposed and it agrees well with test data.

Evaluation of Bond Strength of Deformed Bars in Pull-out Specimens Depending on Stirrups Spacing, Rebar diameter and Corrosion Rate (스터럽간격, 철근직경 및 부식률에 따른 인발 실험체의 부착강도 평가)

  • Seong-Woo Ji;Hoseong Jeong;Cha-Young Yoon;Jae-Yeon Lee;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.47-57
    • /
    • 2023
  • In this study, pull-out tests were performed to investigate the effects of stirrup spacing, rebar diameter, and corrosion rate on bond strength of deformed bars in reinforced concrete. Twelve pull-out specimens with different stirrup spacing, rebar diameter, and corrosion rate were prepared following the RILEM RC6 guidelines. The test results showed that the bond strength of specimens with stirrups increased when the corrosion rate was less than 3%, whereas it decreased when the corrosion rate was more than 3%. On the other hand, the bond strength of specimens without stirrups decreased as the corrosion rate increased. The effect of rebar diameter was less significant compared to those of stirrup spacing and corrosion rate. A bond strength model for pull-out specimens was proposed considering stirrup ratio and corrosion rate, and the model showed the lowest error among the previous models.

Neuro-Fuzzy modeling of torsional strength of RC beams

  • Cevik, A.;Arslan, M.H.;Saracoglu, R.
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.469-486
    • /
    • 2012
  • This paper presents Neuro-Fuzzy (NF) based empirical modelling of torsional strength of RC beams for the first time in literature. The proposed model is based on fuzzy rules. The experimental database used for NF modelling is collected from the literature consisting of 76 RC beam tests. The input variables in the developed rule based on NF model are cross-sectional area of beams, dimensions of closed stirrups, spacing of stirrups, cross-sectional area of one-leg of closed stirrup, yield strength of stirrup and longitudinal reinforcement, steel ratio of stirrups, steel ratio of longitudinal reinforcement and concrete compressive strength. According to the selected variables, the formulated NFs were trained by using 60 of the 76 sample beams. Then, the method was tested with the other 16 sample beams. The accuracy rates were found to be about 96% for total set. The performance of accuracy of proposed NF model is furthermore compared with existing design codes by using the same database and found to be by far more accurate. The use of NF provided an alternative way for estimating the torsional strength of RC beams. The outcomes of this study are quite satisfactory which may serve NF approach to be widely used in further applications in the field of reinforced concrete structures.

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

Hysteretic Behavior Evaluation of a RC Coupling Beam using a Steel Fiber and Diagonal Reinforcement (강섬유와 묶음철근 보강을 통한 고성능 연결보의 이력거동 평가)

  • Oh, Hae Cheol;Lee, Kihak;Han, Sang Whan;Shin, Myoungsu;Jo, Yeong Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.291-298
    • /
    • 2015
  • In this paper, a bundled diagonal reinforcement using high performance steel fiber was proposed to enhance the construct ability and seismic performance. Experiments of coupling beam was composed of four specimens and the hysteretic behavior evaluated for reverse cyclic loading to specimens using high performance steel fiber. The main variables of the experiment is a amount of stirrup and bundled reinforcement, depending on whether the mix of steel fiber. Specimen which criteria was applied 100% of stirrup and bundled diagonal reinforcement of ACI318 criteria. With this, by appling same diagonal reinforcement, two specimens were created by adjusting stirrup of 75%, 50%. So, a total of four specimens were produced. When coupling beam was placed concrete, this experiment was mixed in a content of steel fiber 1%. All the specimens were produced by aspect ratio 3.5(l/h=1050/300) to a half-scale. In this result, two specimens as reduced to stirrup of 75%, 50% was no significant difference in the strength, stiffness and energy dissipation capacity, respectively compared to the stirrup of 100%.

Characteristics of Structural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Beams Subjected to Torsion (강섬유 보강 초고성능 콘크리트 보의 비틀림 거동 특성)

  • Yang, In-Hwan;Joh, Changbin;Lee, Jung-Woo;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.87-95
    • /
    • 2014
  • Experimental investigation on the structural behavior of steel fiber-reinforced ultra high performance concrete (UHPC) beams subjected to torsion are presented. Six tests carried out on square beams under torsional moment are presented. The experimental parameters were the volume fraction of the fibers and closed-stirrup ratio. The volume fraction of the fibers was 1.0% and 2.0%. The closed-stirrup ratio was 0, 0.35%, and 0.70%. The test results indicated that ultimate torsional strength increased with increasing fiber volume, and that ultimate torsional strength also increased with increasing the closed-stirrup ratio. In addition, predictive equations for evaluating the ultimate torsional strength of UHPC beams were proposed. The comparison between computed values and the experimentally observed values was shown to validate the proposed analytical equations. It was found that predictions by using proposed equation provides good agreement with test results of UHPC beams.