• Title/Summary/Keyword: stirred reactor

Search Result 164, Processing Time 0.031 seconds

Temperature Control of a CSTR using Fuzzy Gain Scheduling (퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어)

  • Kim, Jong-Hwa;Ko, Kang-Young;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

WSR Study of Particle Size, Concentration and Chemistry Near Soot Inception (WSR 초기매연 조건에서의 입자 크기, 농도 및 화학적 특성)

  • Lee, Eui-Ju;Mulholland, George W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1117-1123
    • /
    • 2004
  • The characteristics of soot near the soot inception point for an ethene-air flame was carried out in a WSR (well-stirred reactor). The new sampling tool like the temperature controlled filter system was introduced to minimize the condensation during sampling. The new analysis tools applied include the real time size distribution analysis with the Nano-DMA, particle size by transmission electron microscopy, C/H analysis, g filter analysis, and thermogravimetric analysis using both non-oxidative and oxidative pyrolysis. The WSR can generate young soot particles that can be collected and examined to gain insight into inception. For the current conditions, soot does not form for ${\Phi}$=1.9, inception occurs at or before ${\Phi}$=2.0, and inception combined with soot surface growth and/or coagulation occurs for ${\Phi}$=2.1. The filter samples for ${\Phi}$=1.9 are composed of volatile compounds that evolve at relatively low temperatures when heated in the presence or absence of O$_2$. The samples collected from the WSR at ${\Phi}$=2.0 and ${\Phi}$=2.1 are precursor-like in morphology and size. They have higher C/H ratios and lower organic percentages than precursor particles, but they are clearly not fully carbonized soot. The WSR PAH distribution is similar to that in young soot from inverse flames.

Temperature Control of a CSTR using a Nonlinear PID Controller (비선형 PID 제어기를 사용한 CSTR의 온도 제어)

  • Lee, Joo-Yeon;So, Gun-Baek;Lee, Yun-Hyung;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.482-489
    • /
    • 2015
  • CSTR (Continuous Stirred Tank Reactor) which plays a key role in the chemical plants exhibits highly nonlinear behavior as well as time-varying behavior during operation. The control of CSTRs in the whole operating range has been a challenging problem to control engineers. So, a variety of feedback control forms and their tuning methods have been implemented to guarantee the satisfactory performance. This paper presents a scheme of designing a nonlinear PID controller incorporating with a GA (Genetic Algorithm) for the temperature control of a CSTR. The gains of the NPID controller are composed of easily implementable nonlinear functions based on the error and/or the error rate and its parameters are tuned using a GA by minimizing the ITAE (Integral of Absolute Error). Simulation works for reference tracking and disturbance rejecting performances and robustness to parameter changes show the feasibility of the proposed method.

An analysis of the influence on the formation kinetics of methane hydrate (메탄 하이드레이트 생성 속도에 미치는 영향 분석)

  • Lee Young Chul;Cho Byoung Hak;Baek Young Soon;Lee Woo Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.55-62
    • /
    • 2001
  • This paper describes about the formation of methane hydrate that is artificially made in jacket-type stirred reactor and is observed the change of hydrate shape during the course of reaction. The combustion of manufactured methane hydrate is showed the probability of a storage and transport of gas. And the influence of various experimental conditions of temperature, pressure and stirring rate on the manufacture of methane hydrate is measured. The growth rate and the induction time of methane hydrate is observed according to the conditions. Especially it is important to investigate the effect of temperature and pressure on the growth of hydrate such as the nuclear creation and the structure formation of hydrate in order to study the storage and transport of gas.

  • PDF

PSR-Based Microstructural Modeling for Turbulent Combustion Processes and Pollutant Formation in Double Swirler Combustors

  • Kim, Yong-Mo;Kim, Seong-Ku;Kang, Sung-Mo;Sohn, Jeong-Lak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.88-97
    • /
    • 2001
  • The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR(Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emission characteristics in the highly intense turbulent swirling flame of the double swirler burner.

  • PDF

CO Formation Characteristics in Under-ventilated Fire Conditions using a PSR (Perfectly Stirred Reactor) (완전혼합반응기(PSR)를 이용한 환기부족화재조건에서 CO의 생성특성)

  • Hwang, Hae-Joo;Hwang, Cheol-Hong;Park, Chung-Hwa;Oh, Chang-Bo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.34-37
    • /
    • 2012
  • 환기부족 구획화재에서 CO의 생성은 온도 및 조성에 큰 영향을 받으며, 구획 내의 체류시간 및 이동경로에 따라 복잡한 현상을 경험하게 된다. 그 결과 구획 내부의 CO 생성특성을 실험을 통해 상세하게 규명하는 것은 많은 한계가 있다. 이러한 배경 하에 본 연구에서는 환기부족 구획화재의 조건에서 총괄당량비에 따른 CO의 생성특성에 관한 수치해석 연구를 수행하였다. PSR(완전혼합반응기) code와 헵탄연료의 상세화학반응기구가 사용되었다. 주요 변수로서 체류시간, 온도, 반응물과 생성물의 혼합정도 그리고 열손실 등이 CO의 생성에 미치는 독립적 영향을 검토하였다. 추가로 주요반응에 의한 CO의 몰 생성률 및 소모율과 CO의 반응경로 분석을 통해 환기부족 구획화재의 조건에서 구체적인 CO 생성특성에 관한 이해가 시도되었다.

  • PDF

Study of Soot Formation in Fuel Rich Combustion (농후 연소 추진제의 Soot 생성 특성에 관한 연구)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.143-147
    • /
    • 2007
  • Kerosene and diesel are compounded fuels with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel-rich combustion with detailed kinetics developed by Dagaut using PSR(perfectly stirred reactor) assumption. In Dagaut's surrogate model for kerosene and diesel, chemical kinetics consists of 2352 reaction steps with 298 chemical species. Also, Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux.

  • PDF

Enzymatic Production of Structured Lipids from Capric Acid and Conjugated Linoleic Acid in Soybean Oil

  • Shin, Jung-Ah;Lee, Ki-Teak
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.164.1-164
    • /
    • 2003
  • In this study, medium-chain fatty acid (MCFA) metabolized in the liver for quick energy and CLA exhibited biological activity were used for synthesis of structured lipids (SLs). SLs were synthesized by acidolysis of soybean oil, capric acid (C10:0) and CLA with Chirazyme L-2 lipase as biocatalysts. The effect of enzyme load (2, 4, 6, 8, 10% w/w substrates) was investigated. Production of SL (scale-up) was performed with a 1:2:2 molar ratio (oi1/C10:0/CLA) for 24 h at 55$^{\circ}C$ in a stirred batch reactor (420 rpm). The reaction was catalyzed by Chirazyme L-2 lipase (24.48g, 4% w/w substrates). The scale-up result showed that capric acid and total CLA were incorporated 4.9%, 4.1% (mole%), respectively, in soybean oil. Then, physio-chemical property and flavor characteristic of produced SL-soybean oil were analyzed. Therefore, SL-soybean oil containing C10:0 and CLA was successfully synthesized and may be beneficial in desirable food and nutritional applications.

  • PDF

Lipase-Catalyzed Synthesis of DHA-Enriched Structured Lipid (Docosahexaenoic acid 함유 재구성지질의 효소적 합성 연구)

  • Cho, Eun-Jin;Cho, Kyung-Hyun;Lee, Ki-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.709-712
    • /
    • 2005
  • Structured lipid (SL) was synthesized by enzymatic interesterification of algae oil and corn oil in stirred tank batch reactor, The reaction, performed for 15hr at $65^{\circ}C$, was catalyzed by sn-1,3-specific lipase RM IM from Rhizonucor miehei without organic solvent. DHA, oleic acid, and linoleic acid contents of SL were 14.9, 17.3, and 31.8 mol%, respectively. ${\alpha}-,\;{\gamma}-,\;and\;{\delta}-tocopherol$ contents and physiochemical property of SL were evaluated. During 15 hr reaction, most reaction occurred within 6 hr, and highest relative production rate was observed between 3 to 6 hr.

Repeated-batch Culture of Immobilized Gibberella fujikuroi B9 for Gibberellic Acid Production: An Optimization Study

  • Kim, Chang-Joon;Lee, Sang-Jong;Chang, Yong-Keun;Chun, Gie-Taek;Jeong, Yeon-Ho;Kim, Sung-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.544-549
    • /
    • 2006
  • The performance of immobilized fungal cells on celite beads for the production of gibberrelic acid was investigated in flasks and 7-L stirred-tank reactor. Repeated incubations of immobilized fungal cells increased cell concentrations and volumetric productivity. The maximum volumetric productivity obtained in the immobilized-cell culture was 3-fold greater than that in suspended-cell culture. The concentration of cotton seed flour (CSF), among the various nutrients supplied, most significantly influenced productivity and operational stability. Notably, insoluble components in CSF were found to be essential for production. CSF at 6 g/L with 60 g/L glucose was found to be optimal for gibberellic acid production and stable operation by preventing excessive cell growth.