• 제목/요약/키워드: still-water system

검색결과 319건 처리시간 0.031초

연못을 이용한 동절기 인공습지 오수처리수의 추가 처리 (Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season)

  • 윤춘경;전지홍;김민희;함종화
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

태양열을 이용한 흡수식 냉방시스템의 시뮬레이션과 운전조건의 검토 (Simulation of Solar/Absorption Cooling Hybrid System and Examination of Its Operating Condition)

  • 허재영;이상용
    • 대한설비공학회지:설비저널
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 1985
  • Solar/absorption cooling system was analyzed and its operating condition was examined. For the system, the optimum size of absorption refrigerator and collector area should be determined. As the temperature of water supplied to the generator increases, the collector efficiency decreases whereas the coefficient of performance of absorption refrigerator increases up to a certain point, and vice versa for decreasing of the temperature of water supplied to the generator . Thus if the reeling load is given, the appropriate operating condition can be determined between the two opposing trends by simulation program. As an example of the simulation, the case of Jejudo province was studied. Under the conditions (such as weather data and prices of components, etc.) given en the sample calculation, the result shows that the optimum temperature of water supplied to the generator turned out to be $80.3^{\circ}C$, and still shows a large economical disadvantage in present stage compared to the case of conventional vapor compression cooling/heating combined heat pump system.

  • PDF

패널자료를 이용한 생활용수 수요의 가격탄력도 분석 (Panel Estimation of Price Elasticities on Residential Water Demand in Korea)

  • 박두호;최한주
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.527-534
    • /
    • 2006
  • Demand side management(DSM) is the newly raised issues in the water resources management in recent. Many of the policy tools among demand management, the most important measures might be a pricing system. Furthermore, the responses of consumers on the price for water consumption level is the key factor for policy making. Here, we estimated panel data for 167 regions and over 7 years periods in Korea. Compare to other previous studies the price elasticities were somewhat low. The estimated price elasticity was -0.05. It was because the short term estimated period may derive lower elasticities. However, it might be a recent trend after the continuous increment of water pricing and consumers not willing to decrease their residential water consumption with increasing water pricing. According to this results, water saving effect might be much smaller than we expect with pricing policy. However, It does not imply there is no price effects on water consumption and it's still meaningful as a tool of water management.

하수관거 I/I(침입수/유입수) 분석방법에 따른 산정 결과 비교 -기존 보정방법과 환경부 표준 매뉴얼에 의한 방법- (Analysis on the result of I/I calculation by the exiting method and the standardized maual method)

  • 안병모;송호면
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.213-221
    • /
    • 2011
  • The purpose of sewer system is to separate rain water from sewage water. Through this, it is possible to prevent the flood and preserve public water territory. For the past few years, many problems of the sewer system have been solved by the execution of sewer rehabilitation project. However, they still exist in sewer system caused by I/I, which are divided into infiltration and inflow. Infiltration means the rain water and underground water that infiltrate through breakage point on pipes, inflow means the water that flows in through misconnection on pipes. This study shows how the I/I calculation has changed according to the new standardized manual and identifies the I/I difference between the new calculation and the existing one. Through the analysis on the two calculation methods we examined the appropriacy of the new method by comparing it to the old one. The result points out that the new standardized manual is more appropriate than the old in aspect of objectivity and reproducibility(establish standardization), rationality(alteration of inflow unit).

사례 분석을 통한 해양심층수의 지역냉방시스템 적용 방안 (Application of District Cooling System for Deep Ocean Water by Case Study)

  • 진수휘;박진영;김삼열;김현주
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.179-184
    • /
    • 2011
  • The development of new energy has attracted consideration attention due to the high oil price and environmental problems. In advanced country, they have tried to carry out a long range plan for energy. We need to develop new energy for Low Carbon Green Growth in Korea. The building is 30% among ratio of energy consumption in Korea. And in the past, heating energy was high ratio for energy using at home. But recently, the demand for cooling energy keeps growing due to rising average temperature on the earth and improvement of life quality. In this situation, the energy of lake water and ocean water has studied to utilize in advanced country because of low temperature at underwater. But the study for deep water is still a lot left to do. In this study, we analyzed district cooling system and the present condition. Analyzing the deep lake water cooling system in Toronto, we found an application of district cooling system using deep ocean water. Deep lake water uses heat source for district cooling and water source for city in Toronto. So reducing the initial cost, this city had economic effect. When DLWC was applied at existing building, the heat exchanger was installed instead of cooling tower and refrigerator. And the heat exchanger used to connect main pipe with cool water on city. System using deep ocean water can be applied as a similar way to supply cool water from lake to building.

  • PDF

A case study on the efficiency test of groundwater drainage system for Taejon LNG Pilot Cavern

  • Lee Dae-Hyuck;Lee Chul-Wook;Do Hyo-Lim;Kim Ho-Yeong;Bodin Jean-Luc;Amantini Eric
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.711-715
    • /
    • 2003
  • For Taejon LNG Pilot Cavern being constructed to verify the technical aspects for storing LNG in lined rock cavern, efficiency tests of groundwater drainage system composed of many pumps and boreholes were performed around the cavern before and after the construction of concrete lining. Through evaluation of water balance and monitoring of pressures and flowrates, even if the present drainage system is very good for reducing water entries into the cavern, non-negligible water is still flowing in the floor of the cavern concrete due to heavy rainfall. To improve the drainage efficiency, additional drainage holes and some grouting were planned.

  • PDF

Air-Water 모델에서 액상의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Liquid Phase in Air-Water Model)

  • 오율권;서동표;박설현
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.1-5
    • /
    • 2004
  • In the present study, the gas injection system based on air-water model was designed to investigate the flow characteristics of liquid phase. A PIV system was applied to analyze the flow pattern in a ladle which gas stated to rise upward from the bottom. Gas flow is one of most important factors which could feature a flow pattern in a gas injection system. As the gas injected into the liquid, the kinetic energy of bubble transfer to liquid phase and a strong circulation flow develops in the liquid phase. Such a flow in the liquid develops vortex and improve the mixing process. Due to the centrifugal force, circulation flow was well developed near both wall sides and upper region respectively. Increasing gas flow was helpful to remove dead zone but, weak flow zone still exists in spite of the increasement of gas flow rate.

원자로 차폐체 자연순환냉각에 관한 연구 (HWR Shield Cooling Natural Circulation Study)

  • 신정철
    • 에너지공학
    • /
    • 제21권3호
    • /
    • pp.221-227
    • /
    • 2012
  • The CANDU 9 shield cooling system was designed and layout with the objective of promoting natural circulation on loss of forced flow. In the present study, the shield cooling natural circulation was analyzed using verified the thermal-hydraulic code when the coolant pump or the heat exchanger was lost. This study showed that thermosyphoning cooled the end shields and prevented the end shields and the reserve water tank from boiling for at least 8 hours on loss of the shield cooling pumps but the heat exchangers still operational. With the loss of both pumps and heat exchangers, the end shields remain subcooled for up to 4 hours. To enhance thermosyphoning, the bypass connection to the line from the reserve water tank should be relocated to a point as low as possible.

VVVF기를 기초한 가변식기압급수설비의 자동제어 문제 (Automatic control problems of VVVF converter-based variable-frequency type air)

  • 박용규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.468-468
    • /
    • 1991
  • The variable-frequency type water supply equipment, which adopts the variable-voltage and variable-frequency converter(VVVF converter) to govern automatically the rotating speed of a pump, can save 15-20% of power, as compared with a throttle-controlled pump device or an airpressurized water supply equipment, and is finding a wide application. However, it still has some disadvantages : greater pressure fluctuations during switching over the pump and prolonged low-effeciency running of the pump in the case of small consumption of water. Therefore, it is difficult to apply the equipment to the fire water supply system where the water should not be put into use unless a fire takes place, and the water pressure in pipelines should permanently remain constant. This paper introduces the automatic regulation principle of the variable-frequency type air-pressurized water supply equipment (hereafter referred to as simply BFQS equipment) for dual purposes of daily life and fire control, which combined both technologies of speed governing by a converter and air-pressurized water supplying, then discusses some problems related to automatic control, and finally gives the experimental results of an embodiment-BPQS-100-50 water supply equipment.

  • PDF

개발도상국 중국의 하수처리장 운영.관리능 평가 (O&M Evaluating for Sewage Treatment Plants in China as a Developing Country)

  • 김연권;문용택;김홍석;김지연
    • 환경위생공학
    • /
    • 제21권3호
    • /
    • pp.27-36
    • /
    • 2006
  • For the last 20 years, China has transformed itself from a rural economy into an industrial giant, averaging over 8 % annual growth of GDP. Unfortunately, this rapid growth has taken a significant toll on its natural resource base as well, particularly water resources. These problems have been exacerbated by a low level of sewage treatment technology and by the operating and maintenance (O&M). In case of urban areas, most big cities in China have a well functioning sewage system comprised of sewers and sewage treatment plants (STPs). Nevertheless, the existing STPs are still not capable of properly treating the sewage, both quantitatively and qualitatively. The rural areas in China cover a large land, with two-third of the nation's population. The low educational and poor economic states make it hard to process self-protection and management. In the surveyed area in Henan, there was no STPs put into use as of 2004, and the sewer lines are not well organized. The big issue for the currently planned STPs is the collection system not included in the plans.