• Title/Summary/Keyword: stiffnesses

Search Result 231, Processing Time 0.026 seconds

Lumped Parameter Model for the Nonlinear Seismic Analysis of the Coupled Dam-Reservior-Soil System (댐-호소-지반 계의 비선형 지진응답해석을 위한 집중변수모델)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.267-274
    • /
    • 1999
  • Since the seismic response of dams can be strongly influenced by the dam-reservior interaction in needs to be taken into account in the seismic design of dams. In general a substructure method is employed to solve the dam-reservoir interaction problem in which the dam body is modeled with finite elements and the infinite region of a reservoir using a transmitting boundary. When the water is modeled as a compressible fluid the equation is formulated in frequency domain. But nonlinear behavior of dam body cannot be studied easily in the frequency domain method. In this study time domain formulation of the dam-reservoir-soil interaction is proposed based onthe lumped parameter modeling of the reservoir region, The frequency dependent dynamic-stiffness coefficients of the reservoir are converted into frequency independent lumped-parameters such as masses dampers and springs. The soil-structure interactionis modeled using lumped parameters in similar way. the ground is assumed as a visco-elastic stratum on the rigid bedrock. The dynamic stiffnesses of the rigid surface foundation are calculated using the hyperelement method and are converted into lumped parameters. The application example demonstrated that the lumped parameter model gives almost identical results with the frequency domain formulation.

  • PDF

System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation

  • Fujita, Kohei;Ikeda, Ayumi;Shirono, Minami;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.843-857
    • /
    • 2015
  • System identification is regarded as the most basic technique for structural health monitoring to evaluate structural integrity. Although many system identification techniques extracting mode information (e.g., mode frequency and mode shape) have been proposed so far, it is also desired to identify physical parameters (e.g., stiffness and damping). As for high-rise buildings subjected to long-period ground motions, system identification for evaluating only the shear stiffness based on a shear model does not seem to be an appropriate solution to the system identification problem due to the influence of overall bending response. In this paper, a system identification algorithm using a shear-bending model developed in the previous paper is revised to identify both shear and bending stiffnesses. In this algorithm, an ARX (Auto-Regressive eXogenous) model corresponding to the transfer function for interstory accelerations is applied for identifying physical parameters. For the experimental verification of the proposed system identification framework, vibration tests for a 3-story steel mini-structure are conducted. The test structure is specifically designed to measure horizontal accelerations including both shear and bending responses. In order to obtain reliable results, system identification theories for two different inputs are investigated; (a) base input motion by a modal shaker, (b) unknown forced input on the top floor.

Design optimization of vibration isolation system through minimization of vibration power flow

  • Xie, Shilin;Or, Siu Wing;Chan, Helen Lai Wa;Choy, Ping Kong;Liu, Peter Chou Kee
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.677-694
    • /
    • 2008
  • A vibration power minimization model is developed, based on the mobility matrix method, for a vibration isolation system consisting of a vibrating source placed on an elastic support structure through multiple resilient mounts. This model is applied to investigate the design optimization of an X-Y motion stage-based vibration isolation system used in semiconductor wire-bonding equipment. By varying the stiffness coefficients of the resilient mounts while constraining the dynamic displacement amplitudes of the X-Y motion stage, the total power flow from the X-Y motion stage (the vibrating source) to the equipment table (the elastic support structure) is minimized at each frequency interval in the concerned frequency range for different stiffnesses of the equipment table. The results show that when the equipment table is relatively flexible, the optimal design based on the proposed vibration power inimization model gives significantly little power flow than that obtained using a conventional vibration force minimization model at some critical frequencies. When the equipment table is rigid enough, both models provide almost the same predictions on the total power flow.

Characteristics of Vibration and Sound Radiated from Rails of Concrete Slab Tracks for Domestic High Speed Trains (국내 고속 철도 콘크리트 슬라브 궤도의 진동 및 방사 소음 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.605-616
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In the present paper, characteristics of rail vibration and radiated sound power from concrete slab tracks for domestic high speed train(KTX) is investigated by means of a numerical method. The waveguide finite element and boundary element are combined and applied for this analysis. The concrete slab track is modelled simply with a rail and rail pad regarding the concrete slab as a rigid ground. The wave types which contribute significantly to the rail vibration and radiated noise are identified in terms of the mobility and decay rates. In addition, the effect of the rail pad stiffness on the radiated power is examined for two different rail pad stiffnesses.

Tests of integrated ceilings and the construction of simulation models

  • Lyu, Zhilun;Sakaguchi, Masakazu;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.381-395
    • /
    • 2019
  • This paper proposes a new approach to model the screw joints of integrated ceilings via the finite element method (FEM). The simulation models consist of the beam elements. The screw joints used in the main bars and cross bars and in the W bars and cross bars are assumed to be rotation springs. The stiffness of the rotation springs is defined according to the technical standards proposed by the National Institute for Land and Infrastructure Management of Japan. By comparing the results of the sheer tests and the simulation models, the effectiveness and efficiency of the simulation models proposed in this paper are verified. This paper indicates the possibility that the seismic performance of suspended ceilings can be confirmed directly via beam element models using FEM if the stiffnesses of the screw joints of the ceiling substrates are appropriately defined. Because cross-sectional shapes, physical properties, and other variables of the ceiling substrates can be easily changed in the models, it is expected that suspended ceiling manufactures will be able to design and confirm the seismic performance of suspended ceilings with different cross-sectional shapes or materials via computers, instead of spending large amounts of time and money on shake table tests.

Dynamic Character Analysis of 3-beam Slab Orbits depending on the Hardening of Rail Pad Stiffnesses (3중보 슬래브궤도의 레일패드강성의 경화에 따른 동적거동 특성분석)

  • Choi, Hyun-Su;Choi, Jin-Yu;Kim, Jung-Hun;Park, Dae-Geun;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.870-873
    • /
    • 2008
  • 레일패드는 궤도전체의 탄성확보 뿐만 아니라 열차하중에 의해 침목으로 전달되는 충격을 완화시켜 침목과 도상의 파손을 방지하는 역할을 하는데, 통과톤수의 증가와 기후적 요인에 의하여 패드가 열화되면 패드의 강성이 증가하게 된다. 패드의 강성이 증가하게 되면 레일을 통해 침목으로 전달되는 충격하중이 증가하게 되어 침목의 파손을 유발할 수 있을 뿐만 아니라 침목하면의 도상에도 과도한 충격하중을 전달하여 도상의 손상을 가속화시킬 수 있다. 또한 레일패드의 강성변화는 궤도의 소음과 레일의 파상마모의 진전에도 영향을 미치게 된다. 따라서 레일패드의 공용기간 중에 적정한 강성을 유지할 필요가 있으며, 통과톤수의 증가에 따른 레일패드의 경화도를 산정하는 방법과 레일패드의 경화가 궤도에 미치는 영향을 정량적으로 분석하여 레일패드의 교체주기에 관한 기준을 마련할 필요가 있다. 본 연구에서는 슬래브의 질량과 일정속도대역에서의 패드강성의 민감도분석을 하여 그 결과를 비교하고 레일패드경화에 따른 대상궤도의 동적거동을 수치해석을 통하여 패드강성과 차량주행속도에 따른 윤중의 변동량과 레일의 변위, 가속도 그리고 침목의 변위, 가속도의 변화정도를 분석해 보았다. 궤도시스템의 동적해석을 위한 해석 프로그램으로는 네덜란드 델프트 공과대학에서 개발된 궤도시스템 전용 해석 프로그램인 DARTS(The dynamic analysis of a rail track structure)를 사용하였다. 대상궤도는 국내 1단계 경부고속철도에서 사용되고 있는 3중보 무도상궤도를 사용하였다.

  • PDF

Development of 6-Axis Stiffness Measurement Device for Prosthetic Socket Design (의수 소켓 설계를 위한 6축 인체 탄성도 측정 장치 개발)

  • Oh, Donghoon;Lee, Seulah;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.58-64
    • /
    • 2019
  • The paper proposes a stiffness measurement device composed of a measurement part including six indenters and a fixing part including four fixtures. The device is able to make simultaneously measurements of the stiffness of human arm. The six indenters make use of both position and force control schemes sequentially whenever needed. In addition, the loadcells and the digital encoders are attached to the indenters and electric motors, respectively, so that the data can be provided in real time. On the end of the indenter, two-axis potentiometer is attached in order to measure the angle difference between the applied force axis and the axis normal to the skin of human arm, and to convert the force measured on the loadcell into the actual applied force to skin. For this purpose, the mapping between the voltage output and the angle of potentiometer was obtained by fitting it for each axis. Ultimately, the measurement device was able to measure the stiffnesses of six regions of human arm.

Evaluation of the Grinding Performance of an Engine Block Honing Stone through Monitoring of Workload and Heat Generation (작업부하 및 발열 모니터링에 의한 엔진블록 호닝스톤 연삭성 평가)

  • Yun, Jang-Woo;Kim, Sang-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • Since gasoline engines are based on a combination of a cast iron liner and an aluminum block, which have different thermal properties and stiffnesses, bore shape distortion is likely to occur during honing due to uneven thermal deformation. To solve this problem, many tests and evaluations are needed to support the development of a high-performance honing stone with low heat generation. Moreover, performance evaluation, which depends on inspection and observation after work, often requires much trial and error to optimize tool design, due to challenges in the accurate interpretation of results. This study confirmed that the assessment of grinding capability was clarified by evaluating performance under severe work conditions and by in-situ measurement and recording of current consumption (workload) and heat generation during operation. As a result of using a honing stone with excellent grinding performance in engine block manufacture-in which cylinder bore distortion caused by thermal deformation during manufacture is a problem-a noticeable improvement in the degree of cylindricity was observed.

Stiffening schemes for CFS built-up I-beams with large global imperfections: Capacity and behaviour

  • Dar, M. Adil;Anbarasu M.;Dar, A.R.;Islam, Naqeeb Ul;Ghowsi, Ahmad Fayeq;Carvalho, Hermes
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.447-458
    • /
    • 2022
  • Cold-formed steel (CFS) sections are thin-walled, therefore, more susceptible to different types of geometric imperfections. Global type of geometric imperfections has a significant impact on the load-carrying capacity of flexural members. This paper reports an experimental study that discusses the influence of global imperfections on the flexural response of CFS built-up I-beams composed of two lipped channels, with simply supported ends, under four-point loading. Global imperfections of magnitude over eight times the maximum permissible ones were induced in the specimens, leading to their distress. Using various simple stiffening schemes, the capacity and stiffness of the distressed specimens were improvised. The performance comparisons were made based on the maximum loads resisted, flexural stiffnesses offered, and failure modes experienced by the specimens. As experimental data on such distressed specimens are currently lacking in the literature, the test results of the present study will provide the necessary data needed by future researchers to numerically extend this study further, which will help in the development of necessary design guidelines for the same. The stiffening schemes significantly improved the structural efficiency of distressed specimens in terms of strength and stiffness, by over 60%. As a result, an effective and time-saving solution to such realistic structural engineering problems is given.

Lateral-torsional buckling resistance of composite steel beams with corrugated webs

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.751-767
    • /
    • 2022
  • In the hogging bending moment area, continuous composite beams are subjected to the ultimate limit state of lateral-torsional buckling (LTB), which depends on web stiffness as well as concrete slab and shear connection stiffnesses. The design of the LTB and the determination of the elastic critical moment are produced approximately, using the European Standard EN 1994-1-1:2004, for continuous composite steel beams, but is applicable only for those with a plane web steel profile. Also, and from the previous researches, the elastic critical moment of the continuous composite beams with corrugated sinusoidal web steel profiles was determined. In this paper, a finite element analysis (FEA) model was developed using the ANSYS 16 software, to determine the elastic critical moments of continuous composite steel beams with various corrugated web profiles, such as trapezoidal, zigzag, and rectangular profiles, which were evaluated against numerical data of the sinusoidal one from the literature. Ultimately, the failure load of a composite steel beam with various web profiles was predicted by studying 46 models, based on FEA modeling, and a procedure for predicting the elastic critical moment of composite beams with various web steel profiles was proposed. When compared to sinusoidal web profiles, the trapezoidal, zigzag, and rectangular web profiles required an average increase in load capacity and stiffness of 7%, 17.5%, and 28%, respectively, according to the finite element analysis. Also, the rectangular web steel profile has a greater stiffness and load capacity. In contrast, the sinusoidal web has lower values for these characteristics.