• 제목/요약/키워드: stiffness-based optimal design

검색결과 111건 처리시간 0.024초

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

위상최적설계를 이용한 H형강 부재의 스티프너 형상탐색 (Shape Extraction of Stiffeners of H-beam using Topologically Structural Optimization)

  • 정원식;반 티엔 탄;이동규
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.15-23
    • /
    • 2023
  • In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화 (Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

유연 외팔보의 위치제어 성능향상을 위한 형상 및 제어기 통합설계 (Integrated Structure and Controller Design of Single-Link Flexible Arm for Improving the Performance of Position Control)

  • 이민우;박장현
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.120-129
    • /
    • 2002
  • An integrated structure and controller design approach for rotating cantilever beam is presented. An optimization method is developed for improving positioning performance considering the elastic deformations during high speed rotation and adopting the beam shape and the control gains as design variables. For this end, a dynamic model is setup by the finite element method according to the shape of the beam. The mass and stiffness of the beam are distributed in such a way that the closed-loop poles of the control system should be located leftmost in the complex s-plane. For optimization method, the simulated annealing method is employed which has higher probability to find the global minimum than the gradient-based down-hill methods. Sequential design and simultaneous design methods are proposed to obtain the optimal shape and controller. Simulations are performed with new designs by the two methods to verify the effectiveness of the approach and the results show that the settling time is improved for point-to-point position controls.

공작기계 주축 시스템의 유한요소해석 자동화를 위한 툴 개발 (Development of a tool to automate finite element analysis of a spindle system of machine tools)

  • 최진우
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2350-2355
    • /
    • 2015
  • 본 연구에서는 축과 베어링으로 구성된 공작기계 주축 설계를 위한 1차원 유한요소 해석을 자동화하기 위한 툴을 개발하였습니다. 객체지향 프로그래밍을 기반으로 하기 때문에, CAD 시스템의 객체를 사용할 수 있습니다. 스핀들 시스템을 정의하기 위한 축의 단면과 베어링 강성과 같은 최소한의 데이터를 입력할 필요가 있으며, 그 데이터를 기반으로 형상 모델을 먼저 만들고, 그리고, 1차원 빔과 스프링 요소로 구성된 유한요소 모델로 변환합니다. 본 툴을 위해서 개발된 사용자 인터페이스는 사용자가 툴과 상호교류할 수 있도록 도와줍니다. 본 툴은 다수의 설계 변경과 그 후에 수행되는 유한요소해석 과정을 자동화함으로써 최소한의 시간과 노력으로 공작기계 주축 시스템의 근사 최적 설계를 발견할 수 있도록 해줍니다.

Influence of neck width on the performance of ADAS device with diamond-shaped hole plates

  • Wu, Yingxiong;Lu, Jianfeng;Chen, Yun
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.19-32
    • /
    • 2020
  • Metallic energy-dissipation dampers are widely used in structures. They are comprised of an added damping and stiffness (ADAS) device with many parallel, diamond-shaped hole plates, the neck width of which is an important parameter. However, no studies have analyzed the neck width's influence on the ADAS device's performance. This study aims to better understand that influence by conducting a pseudo-static test on ADAS, with three different neck widths, and performing finite element analysis (FEA) models. Based on the FEA results and mechanical theory, a design neck width range was proposed. The results showed that when the neck width was within the specified range, the diamond-shaped hole plate achieved an ideal yield state with minimal stress concentration, where the ADAS had an optimal energy dissipation performance and the brittle shear fracture on the neck was avoided. The theoretical values of the ADAS yield loads were in good agreement with the test values. While the theoretical value of the elastic stiffness was lower than the test value, the discrepancy could be reduced with the proposed modified coefficient.

G/T 250톤급 양방향 차도선의 차량갑판 구조 최적설계에 관한 기초연구 (Basic Research on Structural Optimum Design of G/T 250ton Class Double-ended Car-Ferry Ship)

  • 강병모;오영철;서광철;배동균;고재용
    • 해양환경안전학회지
    • /
    • 제21권6호
    • /
    • pp.729-736
    • /
    • 2015
  • 본 논문에서는 Goal-Driven Optimization(GDO)을 바탕으로 한 양방향 차도선의 차량갑판의 구조설계에 대하여 최적화를 수행하였다. 차량갑판의 강도와 변형에 대한 영향을 검토하여 경제적 비용을 절약할 수 있는 최적점을 결정하였다. 실험계획법(DOE)과 반응표면법을 바탕으로 한 갑판두께를 110% 증가시켜 차량갑판의 강도와 강성을 높일 수 있었다. 이 결과에 대한 회귀분석을 수행하여 3차 다항식 모형인 최적 회귀모형식으로 제안하며 결정계수 $R^2$ 0.98정도로 나타내어 신뢰성을 확보할 수 있었다.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

다중재료 구조물의 위상 최적화를 위한 재료혼합법의 개발 (Development of a Material Mixing Method for Topology Optimization of Multiple Material Structures)

  • 한석영;이수경
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.726-731
    • /
    • 2004
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.