• Title/Summary/Keyword: stiffness value

Search Result 603, Processing Time 0.025 seconds

Lateral Pressure on ,anchored Excavation Retention walls (앵카지지 굴착흙막이벽에 작용하는 측방토압)

  • 홍원표;이기준
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.81-98
    • /
    • 1992
  • Deep excavation increases utility of underground spaces for high buildings. subways etc. To excavate vertically the underground, safe earth retaining walls and supporting systems should be prepared. Recently anchors have been used to support the excavation wall. The anchored excavation has some advantages toprovide working space for underground construction. In this paper the prestressed anchor loads were measured by load cells which attacted to the anchors to support the excavation walls at eight construction fields. where under-ground deep excavation was performed on cohesionless soils. The lateral pressures on the retaining walls, which are estimated from the measured anchor forces, shows a trapezoidal distribution that the pressure increases linearly with depth from the ground surface to 30% of the excavation depth and then keeps constant value regardless of the stiffness of the walls. The maximum lateral pressure was same to 63% of the Ranking active earth pressure or 17% of the vertical overburden pressure at the final depth The investigation of the measured lateral pressure on the anchored excavation walls shows that empirical earth pressure diagram presented by Terzaghi-Peck and Tschebotarioff could be applied with some modifications to determine anchor loads for the anchored excavation in cohesionless soils.

  • PDF

An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame (해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • The object of this paper is to evaluate on behavior the experimentally of beam-to-column joints for modular steel frame with the hollow structural steel section to LEB C-shape. Beam-to-column joints carried out test on the joint shape bracket-type and welded-type to consideration which the joints for modular steel frame was capacity, deformation and failure mode. Test of results, the beam-column joints decided to the lateral buckling strength in LEB C-shape regardless of joint-shape and joint failure. The strength & stiffness for joints increase as the bracket-thickness. The results from theory of lateral buckling are compared to the experimental results. The ratio of experimental results to theory value is $0.83{\sim}0.95$ in the case of bracket-type and welded-type of $0.87{\sim}0.9$, indicating an accurate and safe estimation.

  • PDF

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

Interpretation of chest bind(結胸) in Donguisusebowon(東醫壽世保元) based on the chest bind disease of the Soyang pattern (『동의수세보원(東醫壽世保元)』의 결흉(結胸) 해석 - 소양인 결흉을 중심으로 -)

  • Jang, Woo-Chang
    • Journal of Korean Medical classics
    • /
    • v.28 no.4
    • /
    • pp.99-119
    • /
    • 2015
  • Objectives : This study aims to compare and analyze the contents and logic of Lee Jema's chest bind theory of the Soyang pattern with that of the traditional perspective since Shanghanlun, and to further investigate its underlying meaning and evaluate its value. Methods : Study chest bind related arguments of Lee through historical, demonstrative and positive investigation. First, contrast related texts starting from Shanghanlun, followed by reasoning based on general medical logic. Finally review clinical case studies from texts and papers for verification. Results : According to Lee, the key to diagnosis and treatment in preventing major chest bind which is a severe condition in the exterior cold pattern of the Soyang constitution, is to disperse fluid bind using GanSui(甘遂) in the water counterflow and vomiting(水逆嘔吐) stage prior to the major chest bind symptoms of stiffness and pain in the lower chest(心下硬痛), and reducing phlegm-rheum using DoJeokGangGiTang(導赤降氣湯) in the beginning stages of chest bind. HyeongBangDoJeokSan(荊防導赤散) is the main formula in treating phlegm-rheum, a causal factor to chest bind, modified according to the 'treat the three burners separately(三焦分治)' theory of the DaoChiSan(導赤散) section in WanBingHuiChun (萬病回春) to accomodate the Soyang constitution. Conclusions : If we follow Lee's diagnosis and treatment system on chest bind, it will allow us to diagnose chest bind in the earlier stages and secure safe treatment.

A Study on Numerical Simulation for Dynamic Analysis of Towed Low-Tension Cable with Nonuniform Characteristics (불균일 단면을 갖는 저장력 예인케이블의 동적해석을 위한 수치해석적 연구)

  • 정동호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from Early Investigations to Current Focus on Human Cancer Stem Cells

  • Fujiki, Hirota;Watanabe, Tatsuro;Sueoka, Eisaburo;Rawangkan, Anchalee;Suganuma, Masami
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.73-82
    • /
    • 2018
  • Cancer preventive activities of green tea and its main constituent, (-)-epigallocatechin gallate (EGCG) have been extensively studied by scientists all over the world. Since 1983, we have studied the cancer chemopreventive effects of EGCG as well as green tea extract and underlying molecular mechanisms. The first part of this review summarizes groundbreaking topics with EGCG and green tea extract: 1) Delayed cancer onset as revealed by a 10-year prospective cohort study, 2) Prevention of colorectal adenoma recurrence by a double-blind randomized clinical phase II trial, 3) Inhibition of metastasis of B16 melanoma cells to the lungs of mice, 4) Increase in the average value of Young's moduli, i.e., cell stiffness, for human lung cancer cell lines and inhibition of cell motility and 5) Synergistic enhancement of anticancer activity against human cancer cell lines with the combination of EGCG and anticancer compounds. In the second part, we became interested in cancer stem cells (CSCs). 1) Cancer stem cells in mouse skin carcinogenesis by way of introduction, after which we discuss two subjects from our review on human CSCs reported by other investigators gathered from a search of PubMed, 2) Expression of stemness markers of human CSCs compared with their parental cells, and 3) EGCG decreases or increases the expression of mRNA and protein in human CSCs. On this point, EGCG inhibited self-renewal and expression of pluripotency-maintaining transcription factors in human CSCs. Human CSCs are thus a target for cancer prevention and treatment with EGCG and green tea catechins.

Effect of Treatment Conditions of Eco-friendly Fluorinated Water-repellent Agent and Design Applications: Silk Fabrics with DTP Finishing (나노잉크 및 반응성잉크를 사용한 DTP 견직물의 친환경 불소계 발수제에 의한 가공효과 연구)

  • Choi, Kyungme;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.18 no.5
    • /
    • pp.159-170
    • /
    • 2014
  • Recent concerns about the PFOA(perfluorooctanoic acid), have been increasing, which is generally applied in the water-repellent finishing process of textile products. It has been proven through animal testing to be harmful to humans, as possible carcinogens and neuro-toxic material. Thus U. S. Environmental Agency has gone as far as requiring the material to be eliminated in its entirety by 2015. As a viable alternative to this water-repellent finishing agent, the development of C6 product is gaining its popularity. The effects of PFOA finishing on the silk fabrics were examined, and we reviewed parameters of the needed process for optimizing appearance and functionality of silk fabrics treated with eco-friendly water-repellent finishing agent. Cross-linking agent affected the most on black color of reactive ink, among the physical properties. The contact angle reading was the highest in $8g/{\ell}$ of concentration for all fabrics. All the fabric specimens, subjected to the DTP and water repellent finishing, exhibited higher stiffness, where rayon specimen showed the highest, compared to the untreated specimens. The results may provide basic information leading to the development of value-added silk fabrics with water-repellency without excessive deterioration of the delicate appearance and inherent soft touch.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.