• 제목/요약/키워드: stiffness optimization

검색결과 518건 처리시간 0.027초

요소제거법을 이용한 구조물 위상최적설계 (Structural Topology Optimization using Element Remove Method)

  • 임오강;이진식;김창식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.183-190
    • /
    • 2001
  • Topology optimization. has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes in many industrial parts. In recent years, topology optimization has become the focus of structural optimization design and has been researched and widely applied both in academy and industry. Traditional topology optimization has been using homogenization method and optimality criteria method. Homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time and additive checkerboard prevention algorithm is needed. In one way to solve this problem, element remove method is presented. Then, it is applied to many examples. From the results, it is verified that the time of convergence is very improved and optimal designed results is obtained very similar to the results of traditional topology using 8 nodes per element.

  • PDF

유한요소해석에 의한 Knuckle의 최적형상설계에 관한 연구 (A Study on the Shape Optimization Design of the Knuckle by the Finite Element Analysis)

  • 나완용;이승호;오상기
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.53-57
    • /
    • 2008
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. It is required more precise analysis for practical load because of complexities and varieties of vehicle structure. In this study, the shape optimization using a FEA is performed to determine the design of the knuckle. The size optimization is carried out to find thickness while the stiffness constraints are satisfied. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

  • PDF

승용차 도어에 대한 다분야통합최적설계 (Multidisciplinary Optimization of Automotive Door)

  • 박경진;송세일
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.201-213
    • /
    • 2005
  • The automotive door has a large finite element model in analysis and many design requirements such as stiffness, natural frequency, side intrusion, etc. Thus, various related governing equations should be solved for systematic analysis and design. Because each governing equation has different characteristics, it is almost impossible to solve them simultaneously. Instead, they are separately handled and the analysis results are incorporated into the design separately. Currently, the design is usually conducted by trials and errors with engineering intuition in design practice. In this research, MDO methods are proposed to solve the problems that share design variables in disciplines. The idea is from the Gauss-Seidel type method for multi-discipline analysis. The developed methods show stable convergence and the weight of the door is reduced by fifteen percent.

유연성과 강성을 고려한 최적구조설계

  • 민승재
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1432-1440
    • /
    • 1997
  • The flexibility as well as the stiffness is required to perform mechanical function of a structure such as compliant mechanisms, which can be applied to MEMS(Micro-Electro-Mechanical Systems), flexible manufacturing devices, and design for no assembly. In this paper, the optimal design problem to achieve both structural flexibility and stiffness is formulated using multi-objective function, and the optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanisms are presented to validate the design method.

A retrofitting method for torsionally sensitive buildings using evolutionary algorithms

  • Efstathakis, Nikos C.;Papanikolaou, Vassilis K.
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.309-319
    • /
    • 2017
  • A new method is suggested for the retrofitting of torsionally sensitive buildings. The main objective is to eliminate the torsional component from the first two natural modes of the structure by properly modifying its stiffness distribution via selective strengthening of its vertical elements. Due to the multi-parameter nature of this problem, state-of-art optimization schemes together with an ad-hoc software implementation were used for quantifying the required stiffness increase, determine the required retrofitting scheme and finally design and analyze the required composite sections for structural rehabilitation. The performance of the suggested method and its positive impact on the earthquake response of such structures is demonstrated through benchmark examples and applications on actual torsionally sensitive buildings.

연료전지차량 차체프레임 강성 및 내구해석 (Stiffness and Fatigue Strength Analysis of Fuel Cell Vehicle Body Frame)

  • 최복록;강성종
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.47-53
    • /
    • 2011
  • Firstly, FEM model for the body frame of a fuel cell vehicle was built up and design optimization results based on different schemes were exhibited. One scheme was to minimize weight while maintaining the normal mode frequencies and the other was to increase the frequencies without weight change. Next, for a rear frame model, shape parameter study on collapse characteristics such as peak resistance load and absorbed energy was carried out. Also, the stiffness of frame mounting brackets was predicted using inertance calculation and the durability of those mounting brackets for vehicle system loads was evaluated. Finally, for a representative mounting model, the influence on durability due to thickness change was analyzed.

근접장 광기록용 서스펜션의 최적설계 (Optimal Design of a Near-field Optical Recording Suspension)

  • 조태민;임경화
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.295-302
    • /
    • 2004
  • In this study the optimization of a NFR suspension is performed using finite element method and experimental modal analysis. NFR suspensions are required to have low compliance modes to allow the slider to comply with the rotating disk, and high tracking stiffness modes to maximize the servo bandwidth of the tracking controller First of all, the dual suspension model is designed based on the characteristics of NFR drives. And the parametric study on the sensitivities of compliance modes and tracking stiffness modes is investigated. Finally, the model satisfying static characteristics is selected and shape optimization is performed to improve dynamic characteristics. A prototype of a NFR suspension is made by etching and modal ekperiment in free state is performed. The results of experiment almost agree with those of finite element method.

5축 머시닝센터의 소비 에너지 저감을 위한 운동요소 경량화 (Lightweight of Movable Parts for Energy Reduction of 5-axis Machining Center)

  • 이명규;남성호;이동윤
    • 한국정밀공학회지
    • /
    • 제30권5호
    • /
    • pp.474-479
    • /
    • 2013
  • Mass reduction of the machine tool movable parts is a tool for achieving lower energy demands of the machine tool operation. The realization of lightweight design in machine tool can be achieved by structural lightweight design and material lightweight design. In this study, topology optimization strategy was applied to design optimized structures of movable parts of 5 axis machining center. The weight of ram which has most significant influence on the stiffness of whole machine tool was reduced without stiffness deterioration. The redesigned optimized ram has 24.2% less weight while maintaining the same displacement caused by cutting force.

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

최적화기법에 기초한 정적처짐을 이용한 교량의 손상평가기법 (Damage Identification based on optimization technique for bridges using static displacement)

  • 최일윤;이준석;임명재;이현석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.489-494
    • /
    • 2003
  • A damage identification technique using static displacements was investigated to assess the structural integrity of bridge structures. For this, the optimization technique was utilized. In this study, structural damage was represented by the reduction in the stiffness of an element. Next, a health index of the element was introduced to estimate the stiffness reduction of the bridge under consideration. Comparisons with numerical and experimental tests were performed to investigate the applicability of the proposed method in the practical field. Various damage scenarios were considered by varying damage-width as well as damage-degree. The influence of noise on the damage identification scheme was also investigated numerically. Finally, the applicability and the limitation of the proposed method' were discussed.

  • PDF