• Title/Summary/Keyword: stiffness of joint

Search Result 825, Processing Time 0.03 seconds

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Error Model and Accuracy Analysis of a Cubic Parallel Device

  • Lim, Seung-Reung;Park, Woo-Chun;Song, Jae-Bok;Daehie Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.75-80
    • /
    • 2001
  • An error analysis is very important to estimate performance of a precision machine. This study proposes an error analysis for a new parallel device, a cubic parallel device. The cubic parallel manipulator has error sources including upper and lower universal joint errors due to the directional changes in the link and actuation errors. The maximum errors of the end effector are affected by the axial direction changes of each links and the clearances of the universal joints when the parallel manipulator is moving along a path. It is found that the changes of errors mostly occur at the positions where the directions of exerting link forces shift. The error analysis is based on an error model formed from the relation between the universal point errors and the end-effector accuracy. The analysis method can be also used in predicting the accuracy of other parallel devices.

  • PDF

Resisting capacity of Korean traditional wooden structural systems subjected to static loading

  • Hwang, Jong-Kook;Kwak, Samuel;Kwak, Ji-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.297-316
    • /
    • 2008
  • This paper investigates the structural behavior of Korean traditional wooden structures on the basis of the structural analysis using the commercialized program, SAP 2000. All the structural systems were analyzed, and the rotational stiffness at each joint was inferred from the experimental result for a half scale model of Bongjeong-sa (a temple in South Korea). In addition, the artificial control of analysis parameters was prevented because the structural analysis was focused on the realization of the most exact structural behavior of real structures. The analysis was carried out for the horizontal and vertical static loads, and all the secondary members were excluded in the structural analysis. The obtained results show that the resisting capacity of the primary structural system is greater than that of the expanding structural system.

Post-Damage Repair of Prestressed Concrete Girders

  • Ramseyer, Chris;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.199-207
    • /
    • 2012
  • Concrete is an economical construction material and for that reason it is widely used in buildings and infrastructures. The use of deicing salts, expansion joint failure, and freeze-thaw cycles have led to concrete bridge girders experiencing corrosion of steel reinforcement and becoming unsafe for driving. The goal of this research is to assess the effectiveness of current and possible repair techniques for the end region of damaged prestressed concrete girders. To do this, three American Association of State Highway and Transportation prestressed concrete girders were tested to failure, repaired, and retested. Three different repair materials were tested including carbon fiber, glass fiber, and surface mounted rods. Each different repair material was also tested with and without injected epoxy. Comparisons were then made to determine if injecting epoxy had a positive effect on stiffness and strength recovery as well as which repair type regained the largest percentage of original strength.

On the seismic behavior of a reinforced concrete building with masonry infills collapsed during the 2009 L'Aquila earthquake

  • Palermo, Michele;Hernandez, Ricardo Rafael;Mazzoni, Silvia;Trombetti, Tomaso
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.45-69
    • /
    • 2014
  • The 2009 L'Aquila, Italy earthquake shook a high density area causing a wide spectrum of damage to reinforced concrete with infill buildings, one of the most common building types used in Italy. The earthquake has proven to be a "full-scale" laboratory to further understand building performance. This paper presents the first results of a joint research effort between the University of Bologna and Degenkolb Engineers, aimed at investigating the seismic behavior of an infilled frame building that collapsed during the earthquake. State-of-the-practice techniques were implemented as a way to determine the reliability of these modeling techniques in anticipating the observed building performance. The main results indicate that: (i) the state-of-the-practice techniques are able to predict the observed behavior of the buildings; (ii) the masonry infills have a great influence on the behavior of the building in terms of stiffness, strength and global ductility.

On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

  • JafarRamaji, Issa;Mofid, Massood
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly accurate models in Drain-2DX, the inelastic behavior of the system is carefully considered. In addition, with inelastic study of the new bracing system and comparison with the prevalent Knee Bracing Frame system (KBF model) in nonlinear static and dynamic analysis, the seismic behavior of the new bracing system is reasonably evaluated.

A Study on the Estimate for Sewing Process by the Mechanical Properties of Commercial Korean Fabrics (시판 한복지의 역학적 특성을 기본으로 한 봉제공정 예측에 관한 연구)

  • Moon, Myung-Hee;Choi, Suk-Chul
    • Fashion & Textile Research Journal
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2001
  • The primary objective of this study was to empirically explore the mechanical properties of marketing Korean fabrics by using KES-FB system and estimate the sewability of Korean clothes by the mechanical properties. From the empirical research, it was found that Korean fabrics for spring and summer has been transformed easier and less flexible by shearing Korean fabrics for autumn and winter. Also, it was found that there is a significant difference in the hand value as tensile, surface and compression. It was found that Korean fabrics for spring and summer has a stiffness and elastic properties of matter and Korean fabrics for autumn and winter has a bulky and abundant elasticity. Finally, it was found that Korean fabrics for autumn and summer in the joint of account of the mechanical properties. Also, the difficulties of process has been expected by sewability like seam-pucker, over feed, sewing and steam-press.

  • PDF

Analysis of the Composite Structure of Tilting Train eXpress (TTX) (한국형 고속틸팅열차(TTX)의 복합재 차체 및 접합부의 구조 해석)

  • Kim Soo-Hyun;Kang Sang-Guk;Lee Sang-Eui;Kim Chun-Gon;Shin Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.657-662
    • /
    • 2004
  • The weight reduction of carbody structures is of great concern in developing high speed tilting train for the normal operation of tilting system. The use of composite materials for the carbody structures has many advantages due to their excellent material properties such as high specific strength and stiffness. In this paper, finite clement analysis was conducted to analysis and design the composite structure of Tilting Train eXpress(TTX). According to JIS E 7105, various load tests were performed using finite element analysis and the structural safety of the composite carbody structure was inspected to determine the thickness of the composite sandwich structure. In addition, structural analysis was conducted to suggest a design of the joint part of composite carbody and metal underframe.

  • PDF

Comparison Study of 2-D OF Parallel Mechanisms: Workspace Optimization and Kinematic Performance (2자유도 병렬 기구의 비교 연구 : 작업영역 최적화 및 기구학적 성능)

  • Nam, Yun-Joo;Lee, Yuk-Hyung;Park, Myeon-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1564-1572
    • /
    • 2006
  • This paper presents the kinematics and workspace optimization of the two different 2-DOF (Degrees-of-Freedom) planar parallel mechanisms: one (called 2-RPR mechanism) with translational actuators and the other (called 2-RRR mechanism) with rotational ones. First of all, the inverse kinematics and Jacobian matrix of each mechanism are derived analytically. Then, the workspace including the output-space and the joint-space is systematically analyzed in order to determine the geometric parameters and the operating range of the actuators. .Finally, the kinematic optimization of the mechanisms is performed with regards to their dexterity, stiffness and space utilization. It is expected that the optimization results can be effectively used as a basic material for the applications of the presented mechanisms to more industrial fields.