• Title/Summary/Keyword: stiffness of fabric

Search Result 178, Processing Time 0.022 seconds

Some Influences of Anisotropy in Clay Soil and Rocks

  • R.H.G.Parry
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.06c
    • /
    • pp.1.2-22
    • /
    • 1997
  • Anisotropic behaviour in soils and soft rocks may be either fabric of stress related ultra in practice is invariably a combination of both. Theoretical studies in the paper include tile iMluence oil untrained strength of assuming both the critical state and Mo21r-Coulomb concepts to hold, and the influence of elastic anisotropy oil predicted undrained effective stress paths. The predictions stemming from these theoretical concepts are examined in the light of evidence from triaxial compression and extension tests oil laboratory prepared, compacted and natural clays and from triaxial compression tests on clay shales. The experimental studies also show the Buence of sample orientation on untrained snear strength, as wen as the iIBluence of anisotropy old the effective stress angle cishearing resistance and of stress patn on measured stiffness.

  • PDF

Mechanical and Electrical Properties of Hydrate-bearing Sediments (하이드레이트 함유 퇴적물의 역학적 성질 및 지구물리 특성)

  • Lee, J.Y.;Francisca, F.;Santamarina, J.C.;Ruppel, C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.594-596
    • /
    • 2007
  • Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on four types of sediments. The tested specimens include sediments with different gas hydrate saturation at four stages of loading. The test results show that the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. The results also show that permittivity and electrical conductivity data can be combined to estimate hydrate volume fraction in laboratory sediments, methodology that might eventually be extended for estimation of hydrate concentrations in field settings.

  • PDF

Mechanical Properties of Carbon Fiber Nano Composites for Nano-fiber Additives and Fabric Orientation (나노섬유 분산과 섬유 배향성에 따른 탄소섬유 나노 복합재료의 기계적 특성)

  • Song, Jun Hee;Choi, Jun Yong;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The mechanical properties of nano composites were evaluated for structural performance in order to enhance their applicability to the car and machine industrial fields. Carbon fiber reinforced plastics (CFRP) and GFRP were manufactured by vacuum-assisted resin transfer molding (VARTM) process with good mechanical properties. Tensile test was conducted to obtain the process factor of each composite. Also, carbon nano fiber (CNF) was dispersed in the composites and the relationship between the mechanical property and the CNF fraction was compared. The tensile strength and stiffness of 0/90 laminated CFRP were the best. CFRP/CNF (0.5 wt.%) was confirmed to be an excellent material for its elasticity and tensile strength.

Changes on the Abrasion and Mechanical Properties of Warp Knitted Fabric for Footwear with Softeners and Heat Treatments (유연제 및 열처리에 따른 신발용 경편성물의 마모 및 역학 특성 변화)

  • Jeon, Youn-Hee;Koo, Ja-Gil;Jeong, Won-Young;An, Seung-Kook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.4
    • /
    • pp.494-499
    • /
    • 2010
  • Knitted fabrics are very popular for their numerous advantages such as greater comfort, attractive garment appearance, better fit on the body, etc. In this study, we investigated the mechanical properties and abrasion property of warp knitted fabrics for footwear which treated with several softeners to improve abrasion resistance. The antistatic softener among the various softeners showed high improvement in abrasion resistance. Among the mechanical properties with treating conditions, WT (tensile energy), G (shear stiffness), B (bending rigidity) increased as treating timeincreased. But the other mechanical properties were little changed with treating concentration.

소형 장기체공형 무인기 날개의 구조 개량 설계

  • Lee, Jung-Jin
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.179-185
    • /
    • 2002
  • In this study, the structural design method for the modified long-endurance UAV is presented. Composite materials using room temperature curing method and wet lay up procedure is applied to all wing structures. The modified wing is composed of 3-piece component for improvement of ground handling. As the sandwich structure is efficient for light weight and high stiffness, all skin is used the sandwich consisting of glass/ epoxy fabric and balsa wood. The proof test is performed up to limit load corresponding to 4g load condition for the modified wing structure.

  • PDF

A Study on the Mechanical and Hand Properties of the Lining Fabrics (의복 안감의 역학적 특성 및 태 평가)

  • Kim, Myung-Ok;Uh, Mi-Kyung;Park, Myung-Ja
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.357-362
    • /
    • 2006
  • This study is to evaluate the objective sensibility of the commercial lining fabrics. Five kinds of the linings were collected by adding taffetas with four kinds of fibers (polyester, nylon, rayon, and acetate) to one polyester stretch fabric. The six basic mechanical and hand properties were studied by using KES-FB system (Kawabata Evaluation System). The result of measuring the mechanical properties shows that polyester has high bending rigidity (B), that polyester-stretch has a high value of linearity of load-extension curve (LT), tensile energy (WT), tensile resilience (RT), and coefficient of friction (MIU) and a low value of bending rigidity(B), shear property, and geometrical roughness (SMD). The nylon has a high value of bending rigidity (B), shear property, and compression resilience (RC). The rayon has a high value of coefficient of friction (MIU) and linearity of compression-thickness curve (LC) and a low value of shear property, and the acetate has a low value of shear property. The result of hand value shows that polyester, nylon, and acetate are a high value of KOSHI (stiffness), NUMERI (smoothness), and FUKURAM (fullness & softness), and they feel stiff and massive, that rayon has a low value of NUMERI and FUKURAMI. The total result of hand value shows that polyester taffeta and polyester stretch fabric are about the same as the best material for the lining of a woman's dress for spring and summer, and the next thing is acetate, but nylon and rayon are somewhat inferior materials. This provides a fundamental data for the comfortable clothing production of a higher value-added product through the study on the mechanical and hand properties of the lining as well as the right side of fabrics.

Graft Copolymerization of MMN4-Vinylpyridine onto Cotton Fiber (면섬유(綿纖維)에의 MMA/4-Vinylpyridine의 공(共)그라프트 중합(重合))

  • Bae, Hyun-Sook;Kim, Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.347-358
    • /
    • 1993
  • Graft copolymerization of MMN4-VP onto cotton fiber using Ce(IV) salt as an initiator and triton X-100 as an emulsifier was performed under various polymerization conditions. In cograft polymerization, the polymeization behavior according to variation of 4-VP feed composition and the characteristics of MMA/4-VP graft polymer such as affinity for acid dye owing to cationization of cotton, antibacterial activity and thermal behavior were investigated. The results of this study were as follows : 1. While in copolymerization of MMA and 4-VP, 4-VP content in copolymer was more than that of monomer feed composition. 2. Increasing 4-VP content, graft yield was decreased, but graft efficiency was increased. In case of MMA/4-VP graft polymerization, the highest graft yield was obtained at higher CAN concentration than in MMA graft polymerization, the reason is that the behavior of 4-VP was disturbed by Ce(IV) sail 3. Elevation of temperature resulted in increase of graft yield and the apparent activation energy of MMA/4-VP graft polymerization was higher than that of MMA graft polymerization. 4. MMA/4-VP grafted cotton fiber showed affinity for acid dye, antibacterial activity and higher moisture regain than MMA grafted cotton fiber. MMA/4-VP grafted cotton fabric showed improvement of wrinkle recovery up to 40~50% graft yield and decreased thereafter. MMA/4-VP and MMA grafted cotton fabric did not showed significant difference in wrinkle recovery and stiffness.

  • PDF

Natural Dyeing and Dyed Fabrics Properties with Persimmon Juice (감물을 이용한 천염염색과 염직물 특성)

  • Han, Mi-Ran;Lee, Jeong-Sook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.2
    • /
    • pp.224-232
    • /
    • 2010
  • The natural dyeing of fabrics with persimmon juice(astringent persimmon, sweet persimmon, astringent and sweet persimmon mix) was investigated. After dyeing of cotton and silk fabrics with persimmon juice, we evaluated the dyeability of persimmon juice, the observation of fabric surface with high magnification video microscope, physical properties and color fastness with the conditions of repeating times of dyeing and variables of mordants. The results obtained from this study were as follows: The fabrics dyed with astringent persimmon have shown the highest color difference, while the fabrics dyed with sweet persimmon and the fabrics dyed with astringent and sweet persimmon mix have shown similar color differences. With the increase of repeating times of dyeing, the brightness of fabric decreased. However, $a^*$ value increased gradually, so that it became dark brown color. The $a^*$ and $b^*$ values of dyed fabrics with Fe-mordant have dropped significantly, so that they have shown achromatic colors. But the fabrics treated with other mordants have shown yellowish brown colors. On the surface of the fabrics, threads were bonded together by the viscosity of persimmon juice. Regardless of the types of persimmon juice, stiffness was increased after dying, while crease resistance was decreased. The water repellency of silk fabrics were improved than cotton fabrics after dyeing with sweet persimmon juice, but in case of cotton, it hasn't changed. Washing fastness was improved with the EM(Effective Microorganism)-fermented liquid treatment, and rubbing fastness of two fabrics was better in dry condition than in wet condition.

The Effect of Mordant on the Mechanical Properties and Primary Hand Values of Fabrics Dyed with Bamboo and Pine Leaf Extracts (매염제 처리가 대나무잎과 솔잎 추출물로 염색한 직물의 물성 및 태에 미치는 영향)

  • Lee, Jung-Soon;Woo, Hyo-Jung;Jung, Go-Eun
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.648-659
    • /
    • 2012
  • This research categorizes fundamental data needed to develop eco-friendly fabrics treated with bamboo leaf & pine leaf extracts. The effect of mordant on those fabrics was analyzed through the measurement of mechanical properties and the estimation of primary hand values for cotton and silk fabrics dyed with bamboo leaf and pine leaf extracts that were later treated with various mordants. When cotton was dyed with bamboo leaves and pine leaves extracts, EM, WT, 2HB, 2HG, 2HG5, LC, T, and W increased however, RT, SMD, and RC decreased compared to raw cotton fabric. The B, G, and MIU increased after mordant treatment to the dyed cotton and resulted in a stiffer and rougher cotton's hand. EM, WT, RT, MIU, WC, T, and W increased (in terms of silk); however, LT, B, 2HB, G, 2HG, 2HG5, MMD, SMD, and LC decreased compared to raw silk fabric. Similar to the dyed cotton, mordant treatment increased the MIU and LC of dyed silk subsequently, the hand became stiffer and rougher. A greater tannin adsorption results in an increased mechanical property and the primary hand value. For both fabrics, mordant treatment made its smoothness drop. However, the scale of drop for cotton was significant, while the scale of the drop for silk was minor. In terms of type of mordant, femordant and natural-mordant treatment influenced the tensile, shear, surface properties of fabrics, and primary hand values more than Cu-mordant and synthetic-mordant in addition, this increased the stiffness, hardness, and roughness of fabrics.

Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition (섬유 강화 지능형 연성 복합재 구동기의 재료구성에 따른 거동특성 평가)

  • Han, Min-Woo;Kim, Hyung-Il;Song, Sung-Hyuk;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.81-85
    • /
    • 2017
  • Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.