DOI QR코드

DOI QR Code

Mechanical Properties of Carbon Fiber Nano Composites for Nano-fiber Additives and Fabric Orientation

나노섬유 분산과 섬유 배향성에 따른 탄소섬유 나노 복합재료의 기계적 특성

  • Song, Jun Hee (Division of Mechanical Design Engineering, Chonbuk National University) ;
  • Choi, Jun Yong (Dayou SE Co. Ltd.) ;
  • Kim, Yonjig (Division of Mechanical Design Engineering, Chonbuk National University)
  • 송준희 (전북대학교 공과대학 기계설계공학부) ;
  • 최준용 ((주)대유 SE) ;
  • 김연직 (전북대학교 공과대학 기계설계공학부)
  • Received : 2011.08.22
  • Published : 2012.02.25

Abstract

The mechanical properties of nano composites were evaluated for structural performance in order to enhance their applicability to the car and machine industrial fields. Carbon fiber reinforced plastics (CFRP) and GFRP were manufactured by vacuum-assisted resin transfer molding (VARTM) process with good mechanical properties. Tensile test was conducted to obtain the process factor of each composite. Also, carbon nano fiber (CNF) was dispersed in the composites and the relationship between the mechanical property and the CNF fraction was compared. The tensile strength and stiffness of 0/90 laminated CFRP were the best. CFRP/CNF (0.5 wt.%) was confirmed to be an excellent material for its elasticity and tensile strength.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. H. Gabr, M. A. Elrahman, K. Okubo, and T. Fujii, Compos. Struct. 92, 1999 (2010). https://doi.org/10.1016/j.compstruct.2009.12.009
  2. S. C. Lee, S. T. Jeong, J. N. Park, S. J. Kim, and G. J. Cho, Acta Mecha. Solida Sin. 21, 364 (2008). https://doi.org/10.1007/s10338-008-0844-z
  3. N. Sela and O. Ishiai, Composites 20, 423 (1989). https://doi.org/10.1016/0010-4361(89)90211-5
  4. V. Kostopoulos, P. Tsotra, P. Karapappas, S. Tsantzalis, A. Vavouliotis, and T. H. Loutas, Compos. Sci. Technol. 67, 822 (2007). https://doi.org/10.1016/j.compscitech.2006.02.038
  5. Y. Li, N. Hori, M. Arai, N. Hu, Y. Liu, and H. Fukunaga, Compos. Part A 40, 2004 (2009). https://doi.org/10.1016/j.compositesa.2009.09.002
  6. N. Kuentzer, P. Simacek, S. G. Advani, and S. Walsh, Compos. Part A 38, 802 (2007). https://doi.org/10.1016/j.compositesa.2006.08.005
  7. J. M. Bayldon and I. M. Daniel, Compos. Part A 40, 1044 (2009). https://doi.org/10.1016/j.compositesa.2009.04.008
  8. P. Simacek and S. G. Advani, Compos. Sci. Technol. 67, 2757 (2007). https://doi.org/10.1016/j.compscitech.2007.02.008
  9. W. J. Lee, S. E. Lee, and C. G. Kim, Compos. Struct. 76, 406 (2006). https://doi.org/10.1016/j.compstruct.2005.11.008
  10. Y. M. Tarnopol'skii, V. L. Kulakov, and A. K. Aranautov, Comput. Struct. 76, 115 (2000). https://doi.org/10.1016/S0045-7949(99)00149-2
  11. Y. H. Jang, S. S. Kim, Y. C. Jung, and S. K. Lee, J. Kor. Inst. Met. & Mater. 42, 425 (2004).
  12. S. J. Park, S. H. Im, J. R. Lee, and J. M. Rhee, Polymer (Korea) 30, 385 (2006).
  13. S. Kobayashi and W. Kawai, Compos. Part A 38, 114 (2006).
  14. ASTM Standard D785-08, ASTM, West Conshohocken, PA, USA (2008).
  15. ASTM Standard D3039-08, ASTM, West Conshohocken, PA, USA (2008).