• Title/Summary/Keyword: stiffness loading test

검색결과 491건 처리시간 0.02초

Experimental research on seismic behavior of SRC-RC transfer columns

  • Wu, Kai;Xue, Jianyang;Nan, Yang;Zhao, Hongtie
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.157-175
    • /
    • 2016
  • It was found that the lateral stiffness changes obvious at the transfer position of the section configuration from SRC to RC. This particular behavior leads to that the transfer columns become as the important elements in SRC-RC hybrid structures. A comprehensive study was conducted to investigate the seismic behavior of SRC-RC transfer columns based on a low cyclic loading test of 16 transfer columns compared with 1 RC column. Test results shows three failure modes for transfer columns, which are shear failure, bond failure and bend failure. Its seismic behavior was completely analyzed about the failure mode, hysteretic and skeleton curves, bearing capacity deformation ability, stiffness degradation and energy dissipation. It is further determined that displacement ductility coefficient of transfer columns changes from 1.97 to 5.99. The stiffness of transfer columns are at the interval of SRC and RC, and hence transfer columns can play the role of transition from SRC to RC. All specimens show similar discipline of stiffness degradation and the process can be divided into three parts. Some specimens of transfer column lose bearing capacity swiftly after shear cracking and showed weak energy dissipation ability, but the others show better ability of energy dissipation than RC column.

마찰시험기의 시스템 동적변수 변화에 따른 미끄럼마찰 특성 (Sliding Frictional Characteristics with the Change of Dynamic Parameters in the Friction Measurement)

  • 공호성;윤의성;권오관;오재응
    • Tribology and Lubricants
    • /
    • 제11권2호
    • /
    • pp.44-55
    • /
    • 1995
  • Frictional characteristics with the change of dynamic parameters, such as stiffness, inertia and damping, in the friction measurement at dry sliding surfaces were experimentally and theoretically investigated throughout the study. Dynamic frictional force and the variation in the normal load were mainly measured at the various conditions of system dynamic parameters with which stiffness in the normal direction, loading mechanisms and test materials were varied. For the normal load, mechanisms using both a dead weight and a pneumatic cylinder were applied, which resulted in change of the inertia and damping of the test rig. Test materials were steel, rosin and PTFE, which have different types of intrinsic frictional characteristics. Test results showed that frictional characteristics under different dynamic parameters could be different even though the operating variables were the same and also they could result in the variation in the normal load, which could consequently affect the wear mechanism.

Experimental study on shear damage and lateral stiffness of transfer column in SRC-RC hybrid structure

  • Wu, Kai;Zhai, Jiangpeng;Xue, Jianyang;Xu, Fangyuan;Zhao, Hongtie
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.335-349
    • /
    • 2019
  • A low-cycle loading experiment of 16 transfer column specimens was conducted to study the influence of parameters, likes the extension length of shape steel, the ratio of shape steel, the axial compression ratio and the volumetric ratio of stirrups, on the shear distribution between steel and concrete, the concrete damage state and the degradation of lateral stiffness. Shear force of shape steel reacted at the core area of concrete section and led to tension effect which accelerated the damage of concrete. At the same time, the damage of concrete diminished its shear capacity and resulted in the shear enlargement of shape steel. The interplay between concrete damage and shear force of shape steel ultimately made for the failures of transfer columns. With the increase of extension length, the lateral stiffness first increases and then decreases, but the stiffness degradation gets faster; With the increase of steel ratio, the lateral stiffness remains the same, but the degradation gets faster; With the increase of the axial compression ratio, the lateral stiffness increases, and the degradation is more significant. Using more stirrups can effectively restrain the development of cracks and increase the lateral stiffness at the yielding point. Also, a formula for calculating the yielding lateral stiffness is obtained by a regression analysis of the test data.

Bending characteristics of corroded reinforced concrete beam under repeated loading

  • Fang, Congqi;Yang, Shuai;Zhang, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.773-790
    • /
    • 2013
  • Bending behaviors of corroded reinforced concrete (RC) beams under repeated loading were investigated experimentally. A total of twenty test specimens, including four non-corrosion and sixteen corrosion reinforced concrete beams, were prepared and tested. A numerical model for flexural and cracking behaviors of the beam under repeated loading was also developed. Effects of steel corrosion on reinforced concrete beams regarding cracking, mid-span deflection, stiffness and bearing capacity of corroded beams were studied. The impact of corrosion on bond strength as the key factor was investigated to develop the computational model of flexural capacity. It was shown from the experimental results that the bond strength between reinforcement and concrete had increased for specimen of low corrosion levels, while this effect was changed when the corrosion level was higher. It was indicated that the bearing capacity of corrosion beam increased even at a corrosion level of about 5%.

리브로 보강한 전단 항복형 강판벽의 거동 (Behavior of Shear Yielding Thin Steel Plate Wall with Tib)

  • 윤명호;위지은;이명호;오상훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.503-511
    • /
    • 2001
  • 건물의 내진성을 향상시키는 방법으로 전단벽과 가새 등의 내진요소가 사용된다. 대부분 철근콘크리트 건물에서는 철근콘크리트 전단벽이 철골건물에서는 철골가새가 내진요소로 사용이 되고 있다. 그러나 철근콘크리트 전단벽은 시공이 어렵고 원하는 소성 영역에서 연성(ductility)과 에너지 흡수능력을 만족시키기 어렵다. 강도와 강성이 매우 높고 연성이 우수하며, 자중이 작아서 전단벽의 재료로서 적합하다고 판단된다. 안정적인 거동을 하도록 박강판의 양면에 리브판을 보강하는 방법을 채택하였다. 실험은 강판벽의 폭높이비(D/H) 리브보강형태, 재하이력 등을 변수로 하여 수행하였다. 실험결과로 부터 강판벽의 제반 복원력특성을 분석 고찰하였다.

  • PDF

An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading

  • Fang, Yuan;Yu, Feng;Chen, Anchun;Wang, Shilong;Xu, Guoshi
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.179-196
    • /
    • 2021
  • Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

지중매설 경질폴리염화비닐관의 구조적 거동 (Characteristics of Structural Behavior of Unplasticized Polyvinyl Chloride (PVC-U) Pipe Buried Underground)

  • 김선희;천진욱;김응호
    • 복합신소재구조학회 논문집
    • /
    • 제6권4호
    • /
    • pp.16-23
    • /
    • 2015
  • The industrialization and urbanization forced to increase the density of pipelines such as water supply, sewers, and gas pipelines. The materials used for the existing pipe lines are mostly composed of concretes and steels, but it is true that the development for more durable and efficient materials has been continued performed to produce long lasting pipe lines. Recently, underground pipes serve in diverse applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. In this paper, we present the result of investigation pertaining to the structural behavior of unplasticized polyvinyl chloride (PVC-U) flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, pipe stiffness, 4-point bending test, experimental and analytical studies are conducted. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is about 8% although there are significant variations in the mechanical properties of the pipe material. In addition, it was found by the 4-point bending test there is no problem in the connection between the pipes by coupler.

파괴모드 추정방법을 이용한 모르타르 충전식 슬리브 철근이음의 강성 평가 (Evaluation on Stiffness of Mortar-filled Sleeve Splice Using Estimation Method of Failure Mode)

  • 김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.27-34
    • /
    • 2012
  • 본 연구에서는 기존의 모르타르 충전식 슬리브 철근이음에 대한 부착강도식으로부터 유도한 이 철근이음의 파괴모드 추정방법을 이용하여, AIJ 규준에 의하여 평가한 이 슬리브 철근이음의 강성을 검토하였다. 이것을 위하여 261개 모르타르 충전식 슬리브 철근이음의 기존 실험자료를 채택하여 실험의 결과를 분석한 결과에 의하면 모르타르 충전식 철근이음의 파괴모드 추정방법은 돌기가 없는 강관 슬리브에 SD500 철근을 사용한 철근이음을 제외한 모르타르 충전식 슬리브 철근이음에 대한 강성을 효과적으로 평가할 수 있었다. 그리고 이 슬리브 철근이음의 파괴모드 추정방법에 적용하여 철근의 인장파단 영역에 있는 실험체 중에 주물 슬리브와 돌기가 있는 강관 슬리브를 사용한 실험체에서 SD400 철근을 사용한 경우는 98%, SD500 철근을 사용한 경우는 모든 실험체가 단조가력 시의 강성이 AIJ 규준의 A급 이상인 것으로 나타났고, 철근의 인장파단 영역에 있는 모든 실험체는 슬리브의 종류와 슬리브에 매입한 철근 종류에 관계없이 반복가력 시의 강성이 AIJ 규준의 A급 이상인 것으로 나타났다.

Seismic behavior of steel reinforced concrete special-shaped column-beam joints

  • Liu, Z.Q.;Xue, J.Y.;Zhao, H.T.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.665-680
    • /
    • 2016
  • This paper focuses on the study of seismic behavior of steel reinforced concrete special-shaped column-beam joints. Six specimens, which are designed according to the principle of strong-member and weak-joint core, are tested under low cyclic reversed load. Key parameters include the steel form in column section and the ratio of column limb height to thickness. The failure mode, load-displacement curves, ductility, stiffness degradations, energy dissipation capacity and shear deformation of joint core of the test subassemblies are analyzed. The results indicate that SRC special-shaped column-beam joints have good seismic behavior. All specimens failed due to the shear failure of the joint core, and the failure degree between the two sides of joint core is similar for the exterior joint but different for the corner joint. Compared to the joints with channel steel truss, the joints with solid web steel skeleton illustrate better ductility and energy dissipation capacity, but the loading capacity and stiffness are roughly close. With the increasing of the ratio of column limb height to thickness, the joints illustrate higher loading capacity and stiffness, better energy dissipation capacity, but worse ductility.

Seismic capacity of brick masonry walls externally bonded GFRP under in-plane loading

  • Wang, Quanfeng;Chai, Zhenling;Wang, Lingyun
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.413-431
    • /
    • 2014
  • By carrying out the experiment of eight pieces of brick masonry walls with pilaster strengthened by Glass fiber reinforced polymer (GFRP) and one piece of normal masonry wall with pilaster under low reversed cyclic loading, the failure characteristic of every wall is explained; Seismic performances such as hysteresis, stiffness and its degeneration, deformation, energy consumption and influence of some measures including strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor on reinforcement effects are studied. The test results showed that strengthening modes have little influence on stiffness, stiffness degeneration and deformation of the wall, but it is another thing for energy consumption of the wall; The ultimate load, deformation and energy consumption of the walls reinforced by glass fiber sheets was increased remarkably, rigidity and its degeneration was slower; Seismic performance of the wall which considers strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor at the same time is better than under the other conditions.