• Title/Summary/Keyword: stiffness distribution

Search Result 647, Processing Time 0.028 seconds

Influences of Stiffness Distributions on Hydroelastic Responses of Very Large floating Structures (강성분포의 변화가 초대형 부유식 구조물의 유탄성응답에 미치는 영향 고찰)

  • Kim, Byoung-Wan;Hyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Hyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.220-232
    • /
    • 2005
  • Influences of stiffness distributions on hydroelastic responses of very large floating structures (VLFS) are studied in this paper. Hydroelastic responses are calculated by direct method employing higher-order boundary element method (HOBEM) for fluid analysis and finite element method (FEM) for structure analysis. In structural analysis using FEM, Mindlin plate elements are used. An 1 km-long VLFS with uniform stiffness and modified VLFS with varying stiffness distributions are considered in numerical analysis. Responses of VLFS increase in flexible parts and decrease in stiff Parts. Reduction degree of displacements of VLFS with stiffened center is larger than that of VLFS with stiffened sides.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams (접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석)

  • Ha, Sung-Hwan;Kang, Cheol-Kyu;Han, Hong-Soo;Han, Kweon-Gyu;Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.595-606
    • /
    • 2011
  • This study was conducted to investigate the seismic behavior of steel member resisting frames considering the relative stiffness of the connection and beams. Six-story steel moment frames were designed to study the seismic behavior. The connections were classified into Double Web-Angle connections (DWAs), Top- and Seat-angles with double Web-angles (TWSs), FEMA-Test Summary No. 28, Specimen ID: UCSD-6 (SAC), and Fully Restrained (FR). The rotational stiffness of the semi-rigid connections was estimated using the Three-Parameter Power Model adopted by Chen and Kishi. The relative stiffness, which is the ratio of the rotational stiffness of the connections to the stiffness of the beams, was used. Push-over, repeated loading, and time history analysis were performed for all the frames. The seismic behavior of each frame was analyzed with the story drift, plastic hinge rotation, and hysteretic energy distribution.

A Robotic Medical Palpation using Contact Pressure Distribution (접촉 압력 분포를 이용한 로봇 의료 촉진)

  • Kim, Hyoungkyun;Choi, Seungmoon;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • In this paper we present a novel robotic palpation method for the lump shape estimation using contact pressure distribution. Many previous researches about the robotic palpation have used a stiffness map, which is not suitable to obtain geometrical information of a lump. As a result, they require a large data set and long palpation time to estimate the lump shape. Instead of using the stiffness map, the proposed palpation method uses the difference between the normal force direction and the surface normal to detect the lump boundary and estimate its normal. The palpation trajectory is generated by the normal of the lump boundary to track the lump boundary in real-time. The proposed approach requires small data set and short palpation time for the lump shape estimation since the shape can be directly estimated from the optimally generated palpation trajectory. An experiment result shows that our method can find the lump shape accurately in real-time with small data and short time.

A Study on the Estimation of Frictiom Coefficient between Tire and Road Surface Using Running Car data (실차 데이터를 이용한 차륜과 노면간의 마찰계수 예측에 관한 연구)

  • 우관제;산기준일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.207-213
    • /
    • 1999
  • In this study, the possibility of estimation of friction coefficient between tire and road surface using running car data are checked. To get necessary data, such as tire and car velocities and braking force, a test car is driven with certain magnitude of decelerations from pre-set initial velocities to stop . The data are used to estimate friction coefficient with property chosen parameters , e.g,, driving stiffness, pressure distribution functions, etc. Experimental results show that running data car be used with properly chosen parameters to estimate friction coefficient.

  • PDF

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

The Effects of Surface Roughness and Bond Thickness on the Fatigue Life of Adhesively Bonded Tubular Single Lap Joints (비틀림 접착 조인트의 피로 수명에 대한 표면 조도와 접착 두께의 영향)

  • Gwon, Jae-Uk;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2022-2031
    • /
    • 2000
  • Since the surface roughness of adherends affects much the strength of adhesivelybonded joints, the effect of surface roughness on the fatigue life of adhesively bonded tubular single lap joints was investigated analytically and experimentally by fatigue torsion test. The stiffness of the interfacial layer between adherends and adhesive was modeled as a normal statistical distribution function of surface roughness of adherends. From the investigation, it was found that the optimum surface roughness of adherends for the fatigue strength of tubular single lap joints was dependent on bondthickness and applied load.

Relationship between Stiffness of Restorative Material and Stress Distribution for Notch-shaped Non-carious Cervical Lesions

  • Kim, Kwang-Hoon;Park, Jeong-Kil;Son, Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.64-67
    • /
    • 2008
  • This study investigated the influence of composite resins with different elastic moduli and occlusal loading conditions on the stress distribution of restored notch-shaped non-carious cervical lesions (NCCL) using 3D finite element analysis. Two different materials, Tetric Flow and Z100, were used as representative flowable hybrid resins for the restoration of NCCL. A static point load of 500 N was applied at the buccal and palatal cusps. The ratios of stress reduction to energy dissipation were better in the compressive state than the tensile state regardless of the restorative material. The total dissipation ratios for Tetric Flow were 1.5% and 4.2% larger than those for Z100 under compression and tension, respectively. Therefore, tensile stress poses more of a risk for tooth fracture, and Tetric Flow is a more appropriate material for restoration.

Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF

A Study on a Repair Technique for a Reinforced Concrete Frame Subjected to Seismic Damage Using Prestressing Cable Bracing

  • Lee, Jin Ho;EI-Ganzory, Hisham
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • The proposed building upgrading technique employs prestressing cables to function as bracing to improve the seismic performance during future events. A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is assessed and upgraded using the proposed technique. Both existing and upgraded buildings are evaluated in regard of seismic performance parameters performing static lateral load to collapse analysis and dynamic nonlinear time history analysis as well. To obtain realistic comparison of seismic performance between existing and upgraded frames, each frame is subjected to its critical ground motion that has strength demand exceeding the building strength supply. Furthermore, reliability of static lateral load to collapse analysis as a substitute to time history analysis is evaluated. The results reveal that the proposed upgrading technique improves the stiffness distribution compared to the ideal distribution that gives equal inter-story drift. As a result, the upgraded building retains more stories that contribute to energy dissipation. The overall behavior of upgraded building beyond yield is also enhanced due to the gradual change of building stiffness as the lateral load increases.

  • PDF