• Title/Summary/Keyword: stiffness deterioration

Search Result 140, Processing Time 0.024 seconds

Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks

  • ElSafty, Adel;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.79-93
    • /
    • 2013
  • One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying shrinkage. The cracks can be influenced by material characteristics, casting sequence, formwork, climate conditions, geometry, and time dependent factors. The cracking of bridge decks not only creates unsightly aesthetic condition but also greatly reduces durability. It leads to a loss of functionality, loss of stiffness, and ultimately loss of structural safety. This investigation consists of field, laboratory, and analytical phases. The experimental and field testing investigate the early age transverse cracking of bridge decks and evaluate the use of sealant materials. The research identifies suitable materials, for crack sealing, with an ability to span cracks of various widths and to achieve performance criteria such as penetration depth, bond strength, and elongation. This paper also analytically examines the effect of a wide range of parameters on the development of cracking such as the number of spans, the span length, girder spacing, deck thickness, concrete compressive strength, dead load, hydration, temperature, shrinkage, and creep. The importance of each parameter is identified and then evaluated. Also, the AASHTO Standard Specification limits liveload deflections to L/800 for ordinary bridges and L/1000 for bridges in urban areas that are subject to pedestrian use. The deflection is found to be an important parameter to affect cracking. A set of recommendations to limit the transverse deck cracks in bridge decks is also presented.

Influence of Residual Bending Fatigue Strength on Impact Damage of CFRP Composites (CFRP 적층판의 충격손상이 잔류 굽힘 피로강도에 미치는 영향)

  • Yang, Yong Jun;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • CFRP composites are used as primary structural members in various industrial fields because their specific strength and specific stiffness are excellent in comparison to conventional metals. Their usage is expanding to high added-value industrial fields because they are more than 50% lighter than metals, and have excellent heat resistance and wear resistance. However, when CFRP composites suffer impact damage, destruction of fiber and interface delamination occur. This causes an unexpected deterioration of strength, and for this reason it is very difficult to ensure the reliability of the excellent mechanical properties. Therefore, for the destruction mechanism in bending with impact damage, this study investigated the reinforcement data regarding various external loads by identifying the consequential strength deterioration. Specimens were damaged by impact with a steel ball propelled by air pressure. Decrease in bending strength caused by the tension and compression of the impact side, and depending on the lamination direction of fiber and interface inside the specimen. From the bending test it was found that the bending strength reduced when the impact energy increased. Especially in the case of compression on the impact side, as tensile stress occurred at the damage starting point, causing rapid failure and a substantially reduced failure strength.

Mathematical Hysteretic Model of RC Frame Elements (철근 콘크리트 프레임 요소의 수리적(數理的)인 이역(履歷)모델)

  • Chung, Young Soo;Kim, Se Yoll
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.19-27
    • /
    • 1992
  • An enhanced version of the Roufaiel and Meyer model is developed for the simulation of the hysteretic response of reinforced concrete members. This model takes into account the finite size of plastic regions and considers the effects of stiffness degradation, strength deterioration, shear and axial force. A significant improvement is the way in which strength deterioration is simulated during inelastic cyclic loadings. The accuracy of this model has been demonstrated by analytically reproducing numerous laboratory experimental load-deformation curves.

  • PDF

Inelastic Behavior of H-Shaped Beams with Web Openings under Cyclic Loading (반복하중을 받는 유공 H-형강 보의 소성 거동)

  • Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.513-524
    • /
    • 2001
  • A total of nine H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria are based on the formulae proposed by Darwin. The suitability of existing design formulae the effects of plastic hinge on beams with web openings the fracture around the web openings and the influence of cracks neighboring web openings to the beam strength under cyclic loading were also investigated through the observation of the behavior of these beams with various opening dimensions. locations numbers and spacing between the two openings.

  • PDF

A Study on Evaluation System of Track Support Stiffness for Concrete Tracks (콘크리트궤도의 궤도지지강성 평가시스템에 관한 연구)

  • Choi, Jung-Youl;Kim, Man-Hwa;Kim, Hyun-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • A conventional elastic material replacement and performance evaluation are very complicated and time-consuming, and it is difficult to know when to replace the elastic material in advance. By comparing with the product limit and the functional limit, the necessity of elastic material replacement and the improvement of track support stiffness according to replacement can be immediately demonstrated based on experimental data. Using an evaluation system of track support stiffness, the performance evaluation data for elastic materials obtained through field tests using software for track support stiffness is integrated and managed on the administrator's computer. Therefore, the replacement plan is established and maintenance history is managed by identifying the replacement time and location of elastic materials. It is possible to evaluate the performance and condition of the elastic material at the various points during the working time of the track inspection and the track performance (track support stiffness) and durability of the elastic material (aging level, spring stiffness variation rate, etc.) at the operation condition. The elastic material could be replaced timely, and the deterioration of the elastic material can be continuously monitored.

Evaluation of Strength and Stiffness Gain of Concrete at Early-ages (조기재령에서 콘크리트의 강도 및 강성 발현 평가)

  • Hong, Geon-Ho;Park, Hong-Gun;Eum, Tae-Sun;Mihn, Joon-Soo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.237-245
    • /
    • 2010
  • Recently, deflection of the slab during construction periods becoming one of the important issues because of increasing the large-span structures. Early removing the form and support of the slab to achieve the rapid construction cause falling-off in quality of the structures. To reduce these deterioration and make rapid construction, construction of strength and stiffness gain model is needed by the research about the early-age concrete properties. Previous research results indicated that concrete model in existing design codes could not provide the mechanical properties of early age concrete. This paper carried out the concrete compressive strength tests on the curing age at early age stage. Evaluation of the accuracy of compressive strength and modulus of elasticity gain formula in existing various design codes was performed based on this test results, and new design model was proposed. This new model will be useful to develop the new rapid construction methods or prevent the deterioration of the deflection at construction periods. Material tests were performed at 1, 3, 7, 14, 28 curing days, total 159 cylinder style specimens were tested. Based on analyzing the test results, the relationship between compressive strength and modulus of elasticity at early age was proposed.

Flexural behaviour of CFST members strengthened using CFRP composites

  • Sundarraja, M.C.;Prabhu, G. Ganesh
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.623-643
    • /
    • 2013
  • Concrete filled steel tubular members (CFST) become a popular choice for modern building construction due to their numerous structural benefits and at the same time aging of those structures and member deterioration are often reported. Therefore, actions like implement of new materials and strengthening techniques become essential to combat this problem. The application of carbon fibre reinforced polymer (CFRP) with concrete structures has been widely reported whereas researches related to strengthening of steel structures using fibre reinforced polymer (FRP) have been limited. The main objective of this study is to experimentally investigate the suitability of CFRP to strengthening of CFST members under flexure. There were three wrapping schemes such as Full wrapping at the bottom (fibre bonded throughout entire length of beam), U-wrapping (fibre bonded at the bottom throughout entire length and extended upto neutral axis) and Partial wrapping (fibre bonded in between loading points at the bottom) introduced. Beams strengthened by U-wrapping exhibited more enhancements in moment carrying capacity and stiffness compared to the beams strengthened by other wrapping schemes. The beams of partial wrapping exhibited delamination of fibre and were failed even before attaining the ultimate load of control beam. The test results showed that the presence of CFRP in the outer limits was significantly enhanced the moment carrying capacity and stiffness of the beam. Also, a non linear finite element model was developed using the software ANSYS 12.0 to validate the analytical results such as load-deformation and the corresponding failure modes.

The Analysis of Bridge Deck Considering Relative Girder Deflection (거더간 상대처짐을 고려한 바닥판의 해석)

  • 유철수;강영종;최진유;양기재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.141-148
    • /
    • 1998
  • The chloride attack of the top mat of reinforcing bars is a major cause of deterioration of comcrete deck of plate girder bridges. This is caused by a current design method which requires a top mat of reinforcing bars to resist a negative bending moment in bridge decks. In recently, empirical evidence has indicated that the top transverse reinforcing bars can patially or fully be eliminated without jeopardizing the structural integrity of a deck. So, one of the most efficient way to increase durability of concrete deck of bridges is the development of new design method that reduce or eliminate the top mat reinforcing bars, mad it is possible by the exact analysis that considering the negative bending moment reducing effect which introduced by relative deflection of plate girders. In this study, we develop the new bridge deck analysis method that considered the effect of relative girder deflection by applying the principles of slope deflection method of frames, and that is fine tuned with results of finite element analysis. This new approach evaluate a bending moment in a deck based on the effect of relative girder deflection as well as the magnitude of wheel loads, the girder spacing and stiffness, deck stiffness and the span length

  • PDF

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Improvement Method of the Sound Insulation Performance of Aluminium Extruded Panels by the Unit Structure Modification (단위 구조 변경에 의한 알루미늄 압출재의 차음성능 개선)

  • Lee, Hyun-Woo;Kim, seock-Hyun;Kim, Jeong-Tae;Song, Dal-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.457-462
    • /
    • 2009
  • In a high speed train, aluminium extruded panel is widely used in floor, side wall and roof structures for high bending stiffness and weight reduction. However, with some inevitable reasons, aluminium extruded panel shows inferior sound insulation performance compared with the flat panel having same weight. Especially, occurrence of local resonance modes in the particular frequency band, is one of the main reason in the deterioration of the sound insulation performance. Local resonance modes are generated in the structure which consists of periodic unit structure, such as the aluminium extruded panel. The local resonance frequency is determined by the specification of the unit structure. In this study, we predict the local resonance frequency band on the aluminium extruded panel used for the high speed train, and investigate how the design modification in the unit structure influences the local resonance frequency band and panel bending stiffness. The purpose of the study is to provide the design information for the effective unit structure in order to improve the sound insulation performance of the aluminium extruded panel.

  • PDF