• Title/Summary/Keyword: stiffness deterioration

Search Result 140, Processing Time 0.028 seconds

Safety Assessment and Capacity Rating of Existing P.C, Bridges based on Reliability Methods (신뢰성 방법에 기초한 기설 P.C교의 안전도 및 내하력 평가)

  • 조효남;김민영;서종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.45-50
    • /
    • 1990
  • This study develops practical models and methods for the assessment of safety and capacity rating of existing P.C. girder bridges based on the reliability methods. One of the main objectives of the study is to propose a practical but realistic limit state model for safety assessment and LRFR rating criteria, which explicitly incorporates the degree of deterioration and damage as well as actual condition of P.C. girder bridges in terms of the damage factor and the response ratio. The damage factor proposed in the paper is defined as the ratio of the current estimated stiffness to the intact base-line stiffness of a member. Based on the observation and the results of applications to existing bridges, it may be concluded that the proposed methods for the assessment and capacity rating models, which explicitly account for the uncertainties and effects of degree of deterioration or damage, provide more realistic and consistent safety-assessment and capacity rating.

  • PDF

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Experimental Evaluation of the Performance of the HSLDS Magnetic Vibration Isolator with Consideration of the Design Parameter (설계 파라미터를 고려한 HSLDS 마그네틱 진동절연체의 실험적 성능평가)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • The isolation performance of a linear vibration isolator is limited to the ratio of stiffness to mass it supports. The stiffness of the isolator must be large enough to hold the weight. This results in the deterioration of the isolation performance. Recently, to overcome this fundamental limitation, the HSLDS(high-static-low-dynamic-stiffness) magnetic vibration isolator was introduced and its isolation characteristic was investigated theoretically. In this paper, the isolation performance of the HSLDS magnetic isolator is examined experimentally. Considerable amount of experiments are performed by carefully considering nonlinear characteristics. The experimental results verify the practical usability promisingly and agree with the theoretical studies, i.e. its performance is largely dependent on the key design parameter.

Seismic performance assessment of steel reinforced concrete members accounting for double pivot stiffness degradation

  • Juang, Jia-Lin;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.441-455
    • /
    • 2008
  • This paper presents an effective hysteretic model for the prediction and evaluation of steel reinforced concrete member seismic performance. This model adopts the load-deformation relationship acquired from monotonic load tests and incorporates the double-pivot behavior of composite members subjected to cyclic loads. Deterioration in member stiffness was accounted in the analytical model. The composite member performance assessment control parameters were calibrated from the test results. Comparisons between the cyclic load test results and analytical model validated the proposed method's effectiveness.

Design Loads on Railway Substructure: Sensitivity Analysis of the Influence of the Fastening Stiffness

  • Giannakos, Konstantinos
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.46-56
    • /
    • 2014
  • The superstructure of the railway track undertakes the forces that develop during train passage and distributes them towards its seating. The track panel plays a key role in terms of load distribution, while at the same time it maintains the geometrical distance between the rails. The substructure and ballast undergo residual deformations under high stresses that contribute to the deterioration of the so-called geometry of the track. The track stiffness is the primary contributing factor to the amount of the stresses that develop on the substructure and is directly influenced by the fastening resilience. Four methods from the international literature are used in this paper to calculate the loads and stresses on the track substructure and the results are compared and discussed. A parametric investigation of the stresses that develop on the substructure of different types of railway tracks (i.e. balastless vs ballasted) is performed and the results are presented as a function of the total static track stiffness.

Dynamic responses of track according to the hardening of rail-pad (레일패드의 경화에 따른 궤도의 동적응답 변화 특성 분석)

  • Yoon, Tae-Hyoung;Choi, Jin-Yu;Yang, Shin-Chu;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.454-459
    • /
    • 2006
  • A wheel force becomes large as increasing the stiffness of rail-pad, and it accelerates the deterioration of track, and it leads the maintenance cost rising. So, it is required to determine an appropriate replacement period for rail-pad. As a preliminary study to determine it, a numerical analysis was conducted to investigate the influence on a track behavior by the hardening of rail-pad. From the analysis, one knows that the dynamic wheel force is vary depend on the stiffness of rail-pad and the running speed of vehicle, the displacement and acceleration of rail is decreasing as increasing stiffness of rail-pad, and the displacement and acceleration increased in proportion to the rail-pad stiffness increasing.

  • PDF

Pinching Mechanism of Reinforced Concrete Elements (철근콘크리트 부재의 핀칭 메커니즘에 대한 연구)

  • Kim, Ji-Hyun;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.482-485
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. These hysteretic loops can exhibit strength deterioration, stiffness degradation, and a pinched shape. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" in the post-yield hysteretic loops. When the steel grid was set at a 45 degree angle to the shear plane, there was no pinching effect and no strength deterioration. However, when the steel grid was set parallel to the shear plane, there was a severe pinching effect and severe strength deterioration with increasing shear strain magnitude. In this paper, two RC elements subjected to revered cyclic shear stresses are considered to study the effect of the steel grid orientation. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops is studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

Stregthenting of Concrete Structures Using Polymer Resins (폴리머를 이용한 콘크리트 구조물의 강도증진)

  • 변근주;김영진;이상민;김정훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.158-161
    • /
    • 1991
  • By applying the newly developed techniques of polymer impregnated concrete (PIC) severely deteriorated and low quality concrete can be restored to an adequate structural material. Early deterioration of concrete causes severe problems for bridge deck concrete, pavement concrete for highways and airports, hydraulic structures and buiilding structures. Deterioration has its orgin in cracks on concrete surface, scaling of spalling due to freezing and thawing, neutralization of concrete, penetrations of water, salt, and calcium chloride. The objective of this study is to develope the new surface impregnants and strengthening techniques for them. It is found that the new impregnants and strengthening techniques developed in this study can retian the charecteristics of the existing concrete and decrease deterioration, and also increase durability, chemical resistance, strength, stiffness and ductility of the existing concrete.

  • PDF

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.