• Title/Summary/Keyword: stiffness coefficients

Search Result 379, Processing Time 0.043 seconds

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

A Study on the Stiffness of CBA(Corner Block with Anchor Bolt) Joint in Knockdown Type Table Furniture (조립식(組立式) 탁자(卓子)의 CBA접합부(接合部) 강성(剛性)에 관(關)한 연구(硏究))

  • Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-64
    • /
    • 1989
  • Corner block with anchor bolt(CBA) joint method used in knock-down type table furniture manufacturing can reduce the packing and transporting cost. Unfortunately. it also has the disastrous defect to be loosend and unstable during the service life mainly due to fatigue and creep(repeated and prolonged loading). So 22 joint groups constructed were tested to evaluate the effect of some design factors related to the size of side rail(apron). block attachment to side rail. and the number of anchor bolt as well as the effect of the type of corner block(mitered type vs. rectangular type) Usable strength from the stiffness coefficients of each joint group were analysed with SPSS /PC+ and described as the criteria of CBA joint construction. The conclusions were as follows: The height of side rail(50, 75 and 100 mm) and the addition of polyvinyl acetate(PVAc) emulsion in the corner block attactment to side rail had the effect on raising the usable strength of CBA joint with remarkable high significance. And the effect of 2 - anchor bolts was also superior to that of 1 - bolt significantly. However. the thickness of side rail(22 mm vs. 25 mm) had no effect on the strengthening the table joint rigidity. Mitered type corner block joint appeared to he recommendable for CBA jointed table construction rather than the rectangular type one regardless of the method of block attachment to side rail. The best result identified from Duncan's multiple comparison was in the construction with 25 mm thick and 100 mm height of side rail fastened using 2 - anchor bolts in mitered type corner block. But it would be reasonable to use 22 mm thick & 75 mm high side rail and mitered corner block with PVAc emulsion & 2 bolts considering the productivity and production cost down in the MDF furniture manufacturing industries.

  • PDF

A study on characteristics and physiological variables of chest pain induced by exercise test in angina suspected patients (협심증이 의심되는 환자에서 운동부하검사로 유발되는 흉통의 양상과 생리적 변인에 관한 연구)

  • Cho, Mi-Kyoung;Choe, Myoung-Ae
    • Journal of Korean Biological Nursing Science
    • /
    • v.2 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • The purpose of this study was to identify the characteristics and physiological variables of chest pain induced by exercise test in angina suspected patients. The subjects of this study consisted of 28 inpatients and outpatients aged between 40 and 75 who underwent treadmill test at exercise testing laboratory of S-University from January 2000 to June 2000. Subjects were interviewed with questionnaire regarding sociodemography, the past health history and history related to chest pain before the exercise test. Subjects were interviewed with questionnaire concerning quality, intensity, duration of chest pain induced by walking on the treadmill(Marquette, U.S.A. 1992) according to Bruce protocol following exercise test. Systolic and diastolic blood pressure were measured before, during and after the test, heart rate was determined by ECG. The results of this study were as follows ; 1) Quality of chest pain induced by exercise test were feeling stiffness 19(67.9%), heavy 10(36.0%), exploded 9(32.1%), crushing, suffocating, tight 8(28.6%), stuffy, prickly 7(25.0%), burning 6(21.4%), clasp 5(17.9%), cleaved, tensed, piercing 3(10.7%), perfectly fitting, sore 2(7.1%), tearing, tingling, ticklish, heartburn 1(3.6%). 2) Mean score of VAS(intensity of pain) following exercise test was $5.79{\pm}2.27$ and mean duration of chest pain after the test was $7.83{\pm}5.31$ minutes. 3) Sites of chest-pain induced by exercise test were middle site 11(39.3%), left-chest 10(35.6%), right-chest 6(21.5%). Radiation site of chest-pain was neck(18.0%), right flank site 1(3.6%), left shoulder & arm 2(7.1%) and back 1(3.6%). 4) Symptoms other than chest-pain induced by exercise test were dyspnea 21(75.6%), perspiration 14(50.4%), fatigue 12(43.2%), leg-pain 11(39.6%), dizziness 7(25.2%) anxiety toward chest-pain 3(10.8%), thirst 2(7.1%), and palpation, headache and tingling sensation of hand and leg 1(3.6%). 5) Mean MET(intensity of exercise) during the exercise test was $7.64{\pm}2.57$ and mean RPE(rating of perceived exertion) was $15.89{\pm}2.36$. Mean duration of exercise was $6.79{\pm}2.88$. 6) correlation coefficients between RPE and VAS was 0.500(p=0.003), those between MET and VAS was 0.287(p=0.069) and those between either depression or elevation of ST segment and VAS was 0.236(p=0.114). 7) There was a significant difference in mean systolic pressure between before and after the test as $146.29{\pm}28.18mmHg$ and $177.96{\pm}28.82mmHg$(t=-5.640, p=0.000), a significant difference in mean diastolic blood pressure between before and after the test as $84.85{\pm}15.07mmHg$ and $88.89{\pm}13.72mmHg$(t=-2.082, p=0.047), and there was a significant difference in mean heart-rate between before and after the test as $81.89{\pm}12.22/min$ and $160.68{\pm}21.77/min$(t=-21.255, p=0.000).

  • PDF

Demand Strength Spectrums of Low-Rise Reinforced Concrete Buildings Consisted of Extremely Brittle, Shear and Flexural Failure Systems (극취성·전단·휨파괴형 수평저항시스템으로 구성된 저층 철근콘크리트 건물의 요구 내력 스펙트럼)

  • Lee, Kang-Seok;Kim, Jeong-Hee;Oh, Jae-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.529-537
    • /
    • 2007
  • The purpose of this study is to discuss how strength and ductility of each system in low-rise reinforced concrete buildings composed of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system, which is based on nonlinear seismic response analyses of single-degree-of-freedom structural systems. In order to simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and a degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of demand strengths of the triple system for various levels of ductility factors are finally derived for practical purposes. The result indicates that demand strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete buildings having the triple lateral-load resisting system.

A Numerical Study on Dynamic Characteristics of Counter-Rotating Rigid/Deformable Rolls in Press Contact (압착되어 회전하는 강체/변형 롤의 동적 특성에 관한 수치해석 연구)

  • Lee, Moon-Kyu;Lee, Sang-Hyuk;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.869-876
    • /
    • 2011
  • It is important to analyze the dynamic behavior of counter-rotating rigid/deformable rolls in the roll-coating process, because the stability of the process is affected by the dynamic characteristics. In the present study, the effects of material property, angular velocity, and gap size on the contact pressure and contact shape of the deformable roll are numerically investigated. The behavior of two rolls with a negative gap was analyzed using the finite element method, and the material property of the deformable roll was applied with the Mooney-Rivlin coefficients of the hyper-elastic model. The contact shape is affected by the gap size, and the contact pressure mainly depends on the stiffness of the deformable roll and the gap size. To maintain a negative gap between two rolls, controls such as load and displacement controls must be used. The results indicate that displacement control can reduce the instability.

Required Strength Spectrum of Low-Rise Reinforced Concrete Shear Wall Buildings with Pilotis (필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 요구내력 스펙트럼)

  • Lee, Kang-Seok;Oh, Jae-Keun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.61-69
    • /
    • 2007
  • The main purpose of this study is to provide a basic information for the seismic capacity evaluation and the seismic design of low-rise reinforced concrete (RC) shear wall buildings, which are comprised of a pilotis in the first story. In this study, relationships between strengths and ductilities of each story of RC buildings with pilotis are investigated based on the nonlinear seismic response analysis. The characteristics of low-rise RC buildings with pilotis are assumed as the double degree of freedom structural systems. In order to simulate these systems, the pilotis is idealized as a degrading trilinear hysteretic model that fails in flexure and the upper story of shear wall system is idealized as a origin-oriented hysteretic model that fails in shear, respectively. Stiffness properties of both models are varied in terms of story shear coefficients and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of required strengths for various levels of ductility factors are finally derived for practical purposes. The result indicates that the required strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete shear wall buildings having pilotis structure.

Seismic Zonation on Site Responses in Daejeon by Building Geotechnical Information System Based on Spatial GIS Framework (공간 GIS 기반의 지반 정보 시스템 구축을 통한 대전 지역의 부지 응답에 따른 지진재해 구역화)

  • Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.5-19
    • /
    • 2009
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which is strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area of Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area concerned, pre-existing geotechnical data collections were performed across the extended area including the study area and site visits were additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area concerned, seismic zoning map of the site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on this case study on seismic zonations in Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF

Statistical Evaluation of Moisture Resistance by Mixing Method of Recycled Asphalt Mixtures (혼합방법에 따른 순환아스팔트 혼합물의 수분저항성 통계검정 평가)

  • Kim, Sungun;Kim, Yeongsam;Jo, Youngjin;Kim, Kwangwoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 2021
  • When producing recycled asphalt mix, it is important that the old binder of reclaimed asphalt pavement(RAP) should be well melted during blending in the mixer. The recycled asphalt mix is produced by instant mixing(IM) of all materials(RAP, virgin asphalt and new aggregates) all together in the mixer. However, in the same recycled mix, the binder around RAP aggregate was found to show higher oxidation level than the binder coated around the virgin aggregate because the old binder of RAP was not rejuvenated properly while instant mixing. The partially-rejuvenated RAP binder is assumed to be a high stiffness point in IM recycled mix. In this study, the stage mixing(SM) method was introduced; blending RAP and virgin asphalt for the first stage, and then mixing all together with hot new aggregates for the second stage. To compare the effect of the two mixing methods on moisture resistance of recycled mixes, a statistical t-test was performed between SM and IM using indirect tensile strength(ITS) and tensile strength ratio(TSR). Three conditioning methods were used; a 16-h freezing and then 24-h submerging, 48-h submerging, and 72-h submerging in 60℃ water. It was found that the TSR(=ITSwet/ITSdry) values of the mixes prepared by SM was clearly higher than the IM mixes, and coefficients of variation of SM mixes were lower than the IM mixes. It was also observed that the ITSWET of SM was significantly different from the IM at α=0.05 level by statistical t-test. The ITSWET of SM mix was reduced less than the IM mix in severer conditioned mixes. Therefore, it was concluded that the stage mixing method was an important blending technique for producing better-quality of recycled asphalt mixes, which would show higher moisture resistance than the recycled mixes produced by conventional instant mixing.